

TECHNICAL, MAINTENANCE **AND INSTALLATION MANUAL**

TX50S FM TRANSMITTER

JUNE 2000

CTE international Via Sevardi 7 42010 Mancasale (REGGIO E.) ITALY

OWNERS MANUAL MAINTENANCE MANUAL TX50S FM TRANSMITTER Printed : 06-05-2000 Rev. A Cod. MAN-TX50-06052000A

IN ACCORDING TO **R&TTE** RULES NOTIFIED BODY : **0523**

ITALY RESTRICTIONS : "L'uso dell'apparato è soggetto a concessione Potenza RF 50 Watt Canalizzazione 100 Khz (solo mod. TX50S)"

All rights are strictly reserved Reproduction or issue to third parties in any form whatever is not permitted without written authorization

CONTENTS

CHAPTER 1 - SAFETY INSTRUCTIONS

1.1	Introduction	6
		~

CHAPTER 2 - ELECTRICAL SPECIFICATIONS

2.1	Frequency and power	- 8
2.2	Modulation capability	
2.3	Characteristics in MONO	- 8
2.4	Characteristics in STEREO	.9
2.5	SCA characteristics	.9
2.6	Readout on LCD display	.9
2.7	Remote control	
2.8	Power supply and temperature range	10
2.9	Mechanical specifications	
2.10	Options	
2.11	Standards satisfied	

CHAPTER 3 - DESCRIPTION OF THE DEVICE

3.1	Main features	-1	1
3.2	Available options	-1	2
	Block diagram		

CHAPTER 4 - INSTALLATION

4.2	Unpacking and inspection	16
4.2	Installation	16
4.3	Power supply	16
4.4	Ground loops	17
4.5	Transmitter power up	
4.6	Transmitter settings	

CHAPTER 5 - CIRCUITS DESCRIPTION

5.1	AUDIO-IN board	30
5.2	SINTD board	31
5.3	MBA board	31
5.4	AGC board	32
5.5	HSW board	33
5.6	40WN and RFDC boards	33
5.7	DLCD board	

CHAPTER 6 - ADJUSTAMENTS

6.1	HSW module – power supply	35
6.2	1 110	
	RFDC module – directionl coupler	
	MBA module – mother board	

CHAPTER 7 - MODULATION MEASUREMENTS

7.1	General informations	40
7.2	Modulation peak analysis measurements	41
	Modulation power measurements	
7.4	Considerations on the real measurements performed	46

CHAPTER 8 - REMOTE CONTROL

81	PC connection	_49
8.2	COM1	-49

CHAPTER 9 - INTERNAL AND REAR WIEW

9.1	Internal adjastments and settings	.55
	Rear connections	
7.4		59

CHAPTER 10 - DIAGRAMS AND LAYOUTS

10.1	HSW board– power supply	63
10.2	AUDIO-IN board - audio inputs	67
10.3	DLCD board-display driver	73
10.4	MBA board – mother board	78
10.5	KEY board – key	85
10.6	SINTD board-VCO oscillator	88
10.7	DMPX board-stereocoder	94
10.8	AGC board- audio automatic gain control	97
	CON board-MBA / RFDC connection	
10.10	40WN board- RF power module	- 104
10.11	RFDC board- directional coupler	- 107

SAFETY INSTRUCTIONS

1.1 Introduction

CTE has always managed to improve the safety standard if its transmitting and receiving equipment. All produced systems are tested in compliance with international EN60950 and EN60215 rules.

Obviously this is not sufficient to avoid any accident during the installation and the use of our equipment in compliance with EN60215 rule, the radio transmitters and the auxiliary equipment must be used by qualified technical staff only and CTE declines any responsibility for damages caused by an improper use or improper setting up performed by inexperienced staff, not qualified or operating with instruments or tools not in compliance with safety set of rules.

WARNING

CURRENT AND VOLTAGE WORKING IN THIS EQUIPMENT ARE DANGEROUS. THE STAFF MUST ALWAYS OBSERVE THE SAFETY RULES, INSTRUCTIONS AND NORMS CONTAINED HEREIN.

WARNING

THE INSTRUCTIONS CONTAINED IN THIS MANUAL MUST BE READ BEFORE SWITCHING ON OR SETTING THE TRANSMITTER

WARNING

ANY TRANSMITTER SERVICING, REPAIRING OR CHECKING OPERATION REQUIRING THE OPENING OF THE TOP OR BOTTOM COVER, MUST BE PERFORMED AFTER THE MAINS SUPPLY DISCONNECTION WITHOUT REMOVING THE EARTH CONNECTION WHICH THE EFFICIENCY MUST BE VERIFIED: THE CABLE MUST BE IN GOOD CONDITIONS AND WELL CONNECTED.

WARNING

STAFF OPERATING UPON THE TRANSMITTER SYSTEM MUST NOT BE TIRED: AFTER HEAVY WORKS OR CARRYING HEAVY MACHINES BY HAND, IT IS NECESSARY TO RESPECT A PERIOD OF REST BEFORE WORKING WITH SYSTEMS WHICH COULD HAVE DANGEROUS ELECTRIC VOLTAGE IF THEY ARE NOT DISCONNECTED.

WARNING

SEVERAL SYMBOLS, INSIDE THE TYPICAL TRIANGLE SHOWING DANGER, HAVE BEEN PRINTED ON SEVERAL TRANSMITTER PARTS. ATTENTION SHOULD BE PAID, BECAUSE THERE COULD BE THE DANGER DUE TO HOT SURFACES, ELECTRIC VOLTAGE HIGHER THAN 50VOLT OR OTHER SPECIFIED DANGERS.

Certain devices (for example the RF final circuits mosfets) contain Beryllium Oxide BeO; these components must not be broken, crashed or heated. This oxide passes through the common systems of filtering, including the respiratory apparatus. The prolonged inhalation at high degrees causes poisoning with respiratory apparatus paralysis, till death.

WARNING

ALL THE MODULES CONTAINING BEO ARE MARKED WITH THE TRIANGULAR WARNING SYMBOL INDICATING THE NOTICE:

WARNING ! TOXIC HAZARD THESE DEVICES CONTAIN BERYLLIUM OXIDE OBSERVE SAFETY INSTRUCTIONS !

The staff in charge, besides being technically qualified, must have a practice of the first aid in case of emergency or accident (reanimation, heart massage, mouth to mouth respiration, etc.).

Before going on with the operations to be performed, it is necessary to know the position of the general electric switch and the one of the extinguishers, which are to be used very quickly if necessary.

TX50S FM BROADCASTING TRANSMITTER

ELECTRICAL SPECIFICATION

2.1 FREQUENCY - POWER

Frequency range	87.6 to 107.9MHz
Frequency setting	in 100KHz steps (model TX50S-S have 10 Khz steps)
Internal setting mode	by keys
External setting mode	by remote control (RS232-RS485)
Frequency stability	±1000Hz/year
Frequency generation	PLL synthesizer
Modulation type	direct VCO frequency modulation
	±75KHz
Deviation linearity in all frequency range	±0.2dB
Peak detector error	<pre></pre>
RF output power	0 to 50W
	0.1W
	1 to 50W
Power control stability	< 0.1dB
Reverse output power control limit	1 to 9.9W
Reverse output power steps control	0.1W
Harmonics emission	<-70dBc
Spurious emission	<-95dBc
Carrier reduction power (carrier enable off)>60dBc

2.2 MODULATION CAPABILITY

MONO (left and right)	30Hz to 15KHz
STEREO (by internal stereo generator)	30Hz to 53KHz
SCA (two channels)	
COMPOSITE	MONO or STEREO + SCA

2.3 CHARACTERISTICS IN MONO

Signal input	Left + Right
Input impedance	600Ω (balanced) or $10k\Omega$
Unbalance rejection	>40dB
Input level	6 to +12dBm
Pre-emphasis	75 or 50µs
Audio frequency response (30Hz to 15KHz)	
Audio frequency response (19KHz to 100KHz)	<-40dB
Modulation distortion	<0.03%
Signal to noise ratio	>85dB

2.4 CHARACTERISTICS IN STEREO

Signal inputs	Left or Right
Input impedance	600Ω (balanced) or $10k\Omega$
Unbalance rejection	>40dB
Input level	6 to +12dBm
Pre-emphasis	75 or 50µs
Audio frequency response (30Hz to 15KHz)	<0.15dB
Audio frequency response (19KHz to 100KHz)	<40dB
cross-talk between left and right channel	>50dB
Distortion at frequency deviation of 75KHz	<0.03%
Distortion at frequency deviation of 100KHz	<0.03%
Signal to noise referred at deviation of 75KHz	>80dB
Suppression of 38KHz	>80dB
Spurious suppression outside band	in according to ETS 300-384
Pilot reference for RDS encoder (19 Khz out)	1Vpp

2.5 SCA CHARACTERISTICS

Input (SCA1, SCA2)	BNC unbalanced
Input impedance	10ΚΩ
Frequency response (50KHz to 100KHz)	<0.1dB
Distortion	<0.1%
Modulation capability	0 to 10%

2.6 READOUT ON LCD DISPLAY (40x4 character)

Forward power resolution	0.1W
Reverse power resolution	
Modulation resolution	1KHz
Line voltage resolution	
Power amplifier voltage resolution	1V
Power amplifier current resolution	0.1A
Heatsink temperature resolution	1°C

2.7 REMOTE CONTROL

COM1 (front panel)	RS232
COM2 (rear panel)	RS232
COM3 (rear panel)	
Personal computer software	
Transmission protocol	

2.8 POWER SUPPLY AND TEMPERATURE RANGE

Operating voltage	115 or $230V_{AC} \pm 10\%$
Line power	
Nominal temperature range	
Operating temperature range	
Storage temperature range	40° to 50°C

2.9 MECHANICAL SPECIFICATION

19" rackmount	- 485x88x500mm
Weight	12Kg

2.10 OPTIONS

Option A	Stereo generator
Option B	Automatic Audio Level Control
Option C	
TX50S-S	

2.11 STANDARDS COMPLYS (R&TTE)

Electrical characteristics	ETSI 300-384
EMC characteristics	ETSI 300-447
Safety characteristics	EN-60950-EN-60215
Notified Body	0523

GENERAL DESCRIPTION

3.1 Main features

TX50S is a FM band broadcasting transmitter with modern conceiving and technology, which by a simple design produces an output radio signal with high characteristics of quality, reliability and security.

The simple manufacturing obtained with a hi integration of functions, has allowed to create a machine with few controls and connections. Most printed circuits are multilayer with a surface mounting technology component assembling. The eventual repairing can be done by simply changing the fault involved board, without searching the defective component.

One of the most important characteristics is done by the high quality of the frequency modulation and the high signal-to-noise ratio; moreover, the modulation is typically constant within 0.1dB throughout the whole FM band (88–108MHz). A proper peak detector allows to perform both traditional modulation measurements (usual bar-graph with peak), and modulation and power modulation ones with long observation periods (even with many hours or days) according to the latest international regulations, which properly cared to fix a limit scientifically measurable to the peak and modulation power (CEPT 54-01).

An particular audio circuit can control the input audio level with a ± 6 dB dynamics referred to the nominal value: this can be extremely useful when the audio signal level is not fixed or when this one can be subject to fluctuations (usually very slow) due to thermal driftsbad systems maintenance, possible damages along radio link paths etc. A proper board can be inserted to obtain this function and a proper microprocessor follows constantly the modulation value correcting through proper algorithms, implemented in its memory, the value of the modulator gain, keeping this way the modulation very close to the maximum allowed value. The corrections take place at very long periods of time; the board does not perform the audio compressing-limiting functions, but just compensates possible drifts occurring on the systems carrying the audio channel before entering in the FM transmitter. No measurable phase or amplitude distortion is introduced in the modulation when the automatic gain control circuit is enabled. In addition an alarm which switches the power off in case of modulation absence can be inserted since the unmodulated carrier transmission is forbidden in many countries, with no chance to identify the radio.

The transmitter can be set like a modern signals generator so the output power is completely managed by a device which guarantees that the values of forward power, reflected power, maximum output power versus the temperature and loading conditions, are always the ones set or the ones allowed by maximum limits. A directional wide band coupler with remarkable directivity and large on board memory allows to obtain a power accuracy worthy of a good measurement instrument.

All parameters (frequency, levels, mono/stereo, pre-emphasis, power) can be set by the keyboard and stored in \vec{E}^2 PROM in order to be kept even without electric supply. A great number of events can be stored: each alarm is distinguished by a starting and an ending alarm date. The

controlled parameters are: modulation absence, heatsink temperature, mains supply voltage, RF power final stage voltage and current, main oscillator fault.

Besides the keyboard, the transmitter can be remotely controlled in different ways. A personal computer can be connected as monitor to the DB9 socket placed on the front panel and by a special program, to be load easily on the PC, all the transmitter parameters can be set and seen. Furthermore it's possible to perform all the modulation analysis provided by the CEPT 54-01 regulations and create the related graphics which can be stored as a file in the PC.

A second RS232 port placed in the transmitter rear part can be connected to the power amplifier connected in series to the exciter, thus allowing the power data display on the same PC connected to the front RS232.

A third RS485 port placed in the rear part can be connected to a MODEM which is connected to the phone line thus assuring the transmitter telecontrol, remotely or from the studio.

The same RS485 port can be used for the connection N+1 of more transmitters (max 32). In this case a transmitter acts as a "joker", so it replaces the faulty equipment, automatically adapting to all its parameters. Each transmitter is also provided with an output port (IN/OUT) suitable to drive the antenna cable multiplexer and the one for the input audio signals switching.

3.2 Available options

a)	STEREO ENCODER	: additional board allowing the internal encoding of the stereophonic signal
b)	AGC	: additional board allowing a frequency modulation control
c1)	REMOTE CONTROL	: software for the PC connection
c2)	N+1 system	: software to obtain N+1 system

Model TX50S-S have 10 Khz frequency steps

3.3 Block diagram

The transmitter can be modulated by five different audio signal.

The first two ones are made by monophonic left and right channels, which can be balanced or unbalanced. The input dynamic goes from -6 to +12dBm with an input impedance which can be high or low. On these channels either the European or American pre-emphasis value can be inserted. A low pass filter on each of the two inputs assures a good attenuation of audio frequencies higher than 15KHz which could interfere, in case of stereophonic transmission, with higher band and with la subcarrier of the Multiplex signal; the out-of-band attenuation of the filter is not excessive in order not to increase then phase distortion (group delay) of the in band audio signal: 60–70dB of attenuation, even with 0.1dB of amplitude linearity up to 15KHz, unavoidably creates a distortion on the analogue signal that an experienced ear can perceive. Right or left signals can be combined to generate monophonic transmission (should you only have one of the two signals, it

will be necessary to externally put in parallel the two inputs); in case of stereophonic transmission, the two channels are fed inside the stereo code board.

The mono signal or the stereo one, thus obtained, is combined with the other three possible input audio signals: an external Multiplex signal and two SCA signals, one of which can be the RDS one, which can be synchronized with a 19KHz one connected on the IN/OUT rear connector.

The composite signal can enter the AGC board, which has the task to check the its amplitude and consequently to keep the modulation at the correct value, or it can follow its path and enter into the frequency modulator after having passed through a limiter circuit (CLIPPER). This circuit must became active just in cases of faults of previous circuits or in case of mistake in the setting of the low frequency input nominal levels; this is to avoid to interfere with the adjacent channels. For not activating this "fuse", which produces remarkable distortions on the modulation, it is necessary to take all proper cautions, that is the use of external compressor-limiters or by inserting the internal AGC circuit which protects a lot against damages and drifts.

The oscillator, directly modulated by the composite signal, covers the whole FM band and it's synthesized in steps of 10KHz. The reference frequency is obtained by a 10MHz crystal kept at constant temperature of 55°C, whilst the output frequency is set by the main microcontroller. The oscillator phase noise is very good and it is in compliance with ETSI 300-384 regulations (<- 145dBc for a shifting of 1MHz from the carrier). The modulation linearity is typically contained within 0.1dB without complicated corrections.

The RF final power circuit is wide band and it provides 50W RF output controlled with high accuracy; directional coupler has a directivity higher than 25dB on the whole band and an error which is lower than 0.2dB, it is also compensated in temperature and totally shielded.

The power supply is of a switching type and it gives the four essential voltages, all obtained with this technique. A small voltage measurement transformer allows to check the effective value of mains supply voltage with accuracy and to interrupt the output power in case this value exits from the normal operating window of the transmitter (15% respect the nominal value of $115V_{AC}$ or of $230V_{AC}$). The mechanical position of the power supply and the final circuits of RF power allow to obtain a vent flu just for cooling of the involved circuits, obtaining this way a really remarkable efficiency of that function. In normal running conditions, when the transmitter is working in a full power at environmental temperature, the radiator temperature is lower than 35°C, whereas the other circuits temperature does not exceed 30°C. No components are involved with the air flow, so it isn't requested a filter on the aspiration fan, which replacing is rather simple. The power supply is completely shielded both for internal circuits and for its unavoidable emissions toward the outside.

Data displaying and setting is obtained by a board which is placed directly on the front panel containing a microprocessor, memory, keyboard, LCD display. The displaying area is wide so allowing to display and set needed data in a very easy way, thus making the transmitter-user technician interaction extremely user friendly.

It's possible to protect the transmitter input and output parameter settings with a password, while all measurements can be done by whoever without interfering on its operation.

Two communication RS232 ports and a RS485 port can make possible the communication between the transmitter and a PC, with the power amplifier and the driver exciter, or with a modem connected with the telephone line.

Maintenance or repairing of damages do not require the soldering use for the replacement of the parts to be changed; only six flat cables link all different boards.

INSTALLATION

4.1 Unpacking and inspection

Immediately, after the transmitter has been delivered, please carefully check the package to verify possible damages caused by shipment. Should be found some damages, please immediately contact the CTE dealer.

It is recommended to keep the original package for a future shipment due to, for instance, repairing or setting. A return with a package which is different from the original one will make the warranty rights lost.

4.2 Installation

The transmitter TX50S is composed of a 19 inches width rack which takes 2 units in height in a vertical rack mount.

It is recommended to use 4 fixing plastic washers in order to avoid damages to the front panel varnishing. We remind to carefully connect the earth both to the transmitter and to the rack mount-never disconnect it without having switched the supply voltage off by the mains switch.

Design has considered the new rules concerning the electromagnetic compatibility so there aren't problems to locate systems CE marked nearby.

4.3 **Power supply**

AC power supply at 50/60Hz can be at 115V_{AC} or 230V_{AC}.

The switching on control is placed for security reasons on the rear panel with the protection fuse, which must have the value 1.6A for the higher voltage and 3.15A for the lower one and it must be a delayed type. To change the value of the mains supply voltage, the small PCB placed inside the mains supply socket must be switched, taking care to place it in the position allowing to read of the needed voltage.

BEFORE SWITCHING THE TRANSMITTER ON, MAKE SURE

THAT THE POWER SUPPLY IS CORRECT AND CONNECT

THE RIGHT LOAD OR ANTENNA!

4.4 Ground loops

Sometimes connecting various ground sockets having different potentials may produce some unwanted loops, which may create hum in the modulation: in this case it is essential to firstly identify the origin of these currents, which normally spring from the antenna ground, mains supply ground or from the input low frequency signals ground.

If the inconvenience can not be removed, the balanced input of the two channels LEFT and RIGHT can be used, thus obtaining common mode noise rejection of 40dB approximately.

All the inputs and outputs are protected by diodes against the electrostatic discharges and they are provided with filters against the RF noise.

4.5 Transmitter power up

After making sure about the proper earth socket connection, correct power supply and connection of the load on the antenna output, the equipment can be switched on.

If there is the first switching on, problems of wrong setting can't occur since the transmitter contains some standard values and <u>the output power will be set to 0.5W</u>, in order to avoid any problem of interference or driving for possible following amplifiers. The set values will be displayed and changed according to your need before the RF power is emitted from the transmitter. The equipment is provided with a memory which holds all settings even when the electric supply is off, however it is recommended to set the power at 0.5 W when uninstalling the transmitter itself to avoid any problem in case of a new setting up.

REMEMBER THE PASSWORD !

To enter the setting menu, knowing the password is mandatory. It's a four digits number written on the transmitter delivery document. Should it be forgotten, it will be possible to perform the set up by setting the Z2 jumper placed on the board DLCD (vertical board placed behind the rear panel) on the soldering side; the jumper is easy to identify through the close capture: PASSWORD ON/OFF.

In this case, this operation must be performed with the equipment switched off and it requires also the opening of the top cover which, at ended operation, must be closed again with all its screws; it is essential to use a proper cross point screwdriver.

4.6 Transmitter settings

4.6.1 At the switching on, the display will glow giving for few seconds the following screen shot

4.6.2 Afterwards another page will appear for few seconds allowing to change the mains supply voltage value; the value setting operation to 115 or $230V_{AC}$ by switching the network socket, and eventually changing the fuse value, allows the transmitter to operate correctly, but it doesn't allow the microprocessor controlling the equipment to know the mains supply voltage value. For this reason, if the value appearing on the said screen shot doesn't match with the one set on the rear voltage changer, it will be necessary to type ENTER to update to the changing; if the set value unmatched with the one read on the mains supply switch, the transmitter will turn to MAINS SUPPLY VOLTAGE ALARM, for example reading a $220V_{AC}$ voltage when it is set for a $115V_{AC}$ value: in this case the alarm is obviously given since the read voltage exceeds 15% of the nominal value (220V is almost the double of 115V).

DPT : stereo cod - agc - remote control LAST PDWER DN : 06/02/00 16:03 LINE VOLTAGE : 230Vac (115 or 230) press ENTER only for change LINE VOLT.>

If the line voltage appearing on the display matches with the one reading on the mains supply switch, it isn't necessary to type anything. On the opposite ENTER is required.

On the screenshot the options contained in the transmitter and the hour of the last switching on will also appear and it will correspond to the current hour and date. If one finds out a discrepancy between the hour given and the current one, it will be necessary to correct the error in the clock setting.

If this screenshot is accessed from another menu, the indication LAST POWER ON will show the last switching on date and it will be able to give the operator some indications about accidental switching off.

4.6.3 If all the indications are right, after a while the first page will be shown; which with the second one will contain all the most important measurements of the transmitter:

FREQUENCY	101.30 M	MODULATION	75 K
FORW, PW	45,60 W	TEMPERATURE	29 C
REFL. PW	3.2 W	LINE VOLTAGE	226 V
	#n5 alarms	in memory# pag	ge up>

The display is explanatory enough

FREQUENCY	is the output frequency set in MHz
FORW. PW	is the forward output RF power
REFL. PW	is the input reflected power on the RF connector
LOCK ON	shows that main oscillator is locked the programmed frequency
MODULATION	shows the modulation value of the COMPOSITE signal
TEMPERATURE	shows the radiator temperature value of the RF power final mosfet
LINE VOLTAGE	shows the mains supply voltage

Moreover, in the lower part of the display, at the middle there is the indication of the number of alarms eventually set in the memory which have taken place after the last clearing of the memory. These ones will be displayed automatically by a continuous enter of PAGE UP.

If one enters PAGE DOWN in this screen shot, the previous one returns and it will be possible to see once again the date of the last switching on or to change the mains supply voltage value.

If an alarm is on, always in the same position of the display, the intermitting message ALARM will be pointed out.

4.6.4 By entering PAGE UP, it's possible to see the second screen shot of the most important measures:

AUDIO LEVEL is the nominal audio signal set on the setting window placed on the rear panel: if this value doesn't match to the needed one, it's possible to choose 0, 4.1, 6dBm or, by placing the jumper on var, it's possible to choose a value between -6 and +12dBm.
PREEMPH. 75 is the chosen pre emphasis value, always on the rear window, also the value 50µs can be selected; the inclusion or the disabling may be performed by the keyboard in a following screen shot.
AUDIO shows whether the transmitter is set to mono or stereo.

CARRIER EN	shows if the output power is enabled either by a keyboard command or by an external command through the IN/OUT rear connector.
PA VOLTAGE	is the supply voltage of the RF power final mosfet.
PA CURRENT	is the voltage drained by the mosfet final power.
MAX PW SET	is the maximum power value which can be programmed by the
RFL PW SET	keyboard in the screen shot Forward PW adj (1–50W) to avoid accidental over drivings of the following amplifiers.is the maximum allowed output reflected power. Should this limit be reached, the direct power will be reduced to keep constant the limit value of the reflected power
4.6.5 By	entering again PAGE UP, eventual alarms present in the memory will be

4.6.5 displayed:

They are stored in a chronological order ordered by number, type and date.

Besides the real alarm, also the complementary event is stored (return to normality), in order to know the alarm period time:

By entering PAGE UP, the next alarm is displayed, or, if in the last screen shot of main measures there was not any alarm, it will be displayed the screen shot for the PASSWORD request to access the measures. If inside the transmitter the Z2 jumper placed on the DLCD board (in the rear of the front display panel board) is placed to OFF, this request is skipped, so it's possible to directly set the transmitter.

4.6.6 The screen shot for the password request is the following:

_____ p2enter your password for TX setting PASSWORD : 0000

To go on, it is essential entering the four numbers which can be known by reading the transmitter delivery document. If the password is unknown or it is too difficult to open the top cover by unscrewing the 20 locking screws, it is just possible to surf among the previous screen shots which give all the information about the transmitter.

4.6.7 By entering the right combination and then ENTER, the first setting of the transmitter is accessed:

p4- max output forward power setting -DLD PDWER : 40 Watt NEW PDWER : 50 Watt press data and enter only for new power

In this screen shot i the maximum value of the direct power setting can be changed by the keyboard with the limit of 50W, this to avoid to drive an eventual following amplifier, which could bear an input maximum power of few Watts, with an excessive power and harmful consequences; therefore in this screen shot output power can't be adjusted, but a remedy is taken to solve a quite common error in the output power adjustment of the exciter-amplifier systems.

The change and entry of new data may be performed by pressing the horizontal and vertical cursors and the ENTER button.

4.6.8 Entering instead PAGE UP, the following screen shot is accessed:

p5- max output reflected power setting DLD PDWER : 3.5 Watt NEW PDWER : 2.4 Watt press data and enter only for new power

In this screen shot, like in the previous one, it's possible to set the higher limit of the allowed maximum reflected power. If the set limit tends to be exceeded, for a bad antenna operation or a bad load connected to the RF connector, the direct power is reduced proportionally so that this limit won't be exceeded, thus protecting the RF power final mosfet. Usually the reflected power limit is set to a value equal to 10% of the set direct power. Therefore, if the output power is adjusted at 50W, the reflected one can be 5W.

The higher limit of this parameter is 10W and the resolution is 0.1W.

4.6.9 By entering PAGE UP, the following screen shot is accessed:

In this screen shot the output power can be set by means of NEW F. PW adj.. The resolution is 0.1W and the new direct power data are entered by the horizontal and vertical cursors and ENTER. After the new power has been set, it will be possible to read the power measurement really present on the antenna connector (forward and reflected), which may be slightly different from the set one due to the control circuit error or it may be very different in case of standing waves on the output circuit which forces the power control circuits to reduce the power in order not to exceed the reflected power limits.

By means of the horizontal cursor, the power enable can be set, this software command doesn't operate if the transmitter is externally disabled through a CARRIER EN control placed on the rear IN / OUT connector.

Each output power variation command is softly performed with the achievement of the final value in 3 seconds approximately.

4.6.10 By entering PAGE UP the following screen shot is accessed :

In this screen shot the output frequency can be set by the usual cursors with a resolution of 10KHz. On the display the current frequency and the new value appear.

After the ENTER key has been pressed for the new value, the output power is disabled for a few seconds, allowing the oscillator to exactly reach the new value.

4.6.11 By entering PAGE UP, the following screen shot is accessed:

p8--output fine frequency adjustament -OLD VALUE : 100 number must be >0 and <255 press data and enter only for new value

All the rules concerning the radio transmitters in FM band include some limits of accuracy and stability of the output frequency. These limits usually depend on parameters of internal crystal reference, which are at the same time connected firstly to the temperature and ageing of the crystal itself. For this reason the crystal is heated at a constant temperature of 55°C, which guarantees a considerable thermal stability, however a frequency correction due to ageing is easily implemented just manually.

The present screen shot allows a very fine adjustment of the frequency value assigned to the radio station without the need to open the transmitter. By entering a correction factor between 0 and 255, the transmitter frequency can be corrected with a 20Hz step only; this operation can be performed during the normal periodical check of the transmitter or, as it is shown below, through a remote telecontrol.

By entering the new correction value, it's possible to reach a 2KHz offset in comparison to the central value.

4.6.12 PAGE UP for a new screen shot :

p9----- audio signal setting -P7 PREEMPHASIS 75 us : DFF mono/st : STERED press cursor and enter only for change

In this case it's possible to insert the pre-emphasis or to set the transmitter from mono to stereo and vice versa.

The pre-emphasis value (50 or 75μ s) is switched by a jumper placed on the rear window of the rack. The pre-emphasis operates on the LEFT and RIGHT channels only.

By choosing the STEREO option, the LEFT and RIGHT channels are encoded with the stereo subcarrier addition, from which it's possible to get a synchronism in the IN/OUT rear connector (1Vpp sine wave).

On the opposite, if an external stereophonic source is already available, the LEFT and RIGHT inputs must be kept free by using the MPX input (rear BNC); in this case the transmitter must be set to MONO even if the transmission is STEREOPHONIC.

When the transmission is monophonic, if one enters by the two LEFT and RIGHT channels, the transmitter is modulated at the nominal value; if only one channel is available, this one must enter at the same time both in the LEFT and RIGHT channel inputs, so **they must be put in parallel otherwise the deviation would be half of the nominal one.**

4.6.13 By entering PAGE UP the following screen shot appears :

p10 audio in signal-frequency deviation 0. . .20. . .40. . .60. . .80. . .100. .120. khz 1. . . .1. . . .1. . .1. . .1. . .1. . peak COMP: 75 MPX: RIGHT: LEFT:

Here it's possible to see the frequency deviation value and the input signal values.

When the composite signal is chosen (addition of all the modulating signals), the numerical and visual indication appearing is the frequency modulation expressed in KHz while on the LEFT, RIGHT MPX signals, the level is measured and displayed as value 100 when it matches the nominal value.

The indication states the peak and the chosen measurement will be flashing displayed on the LCD.

By modulating the transmitter through the nominal level input signals and with fixed tone (i.e., 400Hz), the deviation must not exceed 75KHz (COMP) and the input signal level must not exceed 100%. But if a music signal is available at the input, indication can also exceed this value and the exact rules for this check will be seen in the screen shot 11.

Besides, if the automatic audio gain control is off, the 75KHz deviation value is equivalent to 100% of the input signal values. On the opposite, if the AGC is on 75KHz deviation can be obtained by an input signal which is variable, as level, from half to the double of the nominal value.

4.6.14 By entering PAGE UP the following screen shot will appear:

p11----Automatic Audio Gain Control -----Range: +/- 6dB referred to nominal value GAIN CONTROL: ON Mod.absence ALARM: ON press data and enter only for change>

In this screen shot it's possible to enter, if installed, the option of the modulation level automatic control due to the audio signals: when the AGC is on, the maximum modulation value is checked at 75KHz varying the audio amplifiers gain; the dynamic is \pm 6dB and this is useful when the input signal level is not sure.

For a wider explanation about the AGC operating see paragraph **4.4**.

There is also a control on the modulation presence, since everywhere it isn't allowed to transmit by unmodulated carrier; after two minutes of modulation absence an alarm can be given and the power can be disabled. When the modulation returns to the normal value, the alarm stops and the usual operation is restored; in case of stereophonic transmission, the threshold for the modulation absence is 10KHz, because of the subcarrier value.

4.6.15 By entering PAGE UP the following screen shot appear :

p13----- CEPT/ERC 54-01 ----modulation analysis over 60 sec OVERMODUL. PEAK FACTOR K press page up> POWER MODULATION press enter>

p14-----CEPT/ERC 54-01 ----0, , ,20, , ,40, , ,60, , ,80, , ,100, ,120, khz over modulation factor K (must be<0.2) press ENTER to measurement start>

p14-----CEPT/ERC 54-01 -----0. . .20. . .40. . .60. . .80. . .100. .120. khz WAIT 60 sec FOR MEASUREMENT RESULT K= ?

p14-----CEPT/ERC 54-01 -----. 0. . .20. . .40. . .60. . .80. . .100. .120. khz K= 2.7 page up/down to exit or continue

p14-----CEPT/ERC 54-01 -----0., 20, 40, 60, 80, 100, 120, khz modulation power PM (must be <0) press ENTER to measurement start>

p14-----CEPT/ERC 54-01 -----0, , ,20, , ,40, , ,60, , ,80, , ,100, ,120, khz WAIT 60 sec FOR MEASUREMENT RESULT РM ? =

p14-----CEPT/ERC 54-01 -----0. . .20. . .40. . .60. . .80. . .100. .120. kh PM = -1,6 dBpage up/down to exit or continue khz

The previous eight screen shots, if selected, allow to perform the measurement of the modulation analysis according to the CEPT 54-01rule. For an exhaustive explanation of this new measurement method see chapter 7.

Briefly, it can be said that a music signal can exceed the limit threshold of 75kHhz, provided that this exceeding is contained in a certain percentage. The rules concerning this topic are contained in the above mentioned regulation and in the IEC-244. Thus it's possible to quantify the excess of over modulation peak and it's possible to show, as in the appendix, that the numerical factor K fixing this limit can not be greater than 0.2. Modulation power on the opposite can not be higher than the one relating to a sine signal deviating 19KHz (reference =0dB)

The observation period, for the measurement and the calculation of these factors, is 1 minute, after that the result will be displayed.

For the calculation of the K over modulation peak factor, 1200 samplings are performed during a 60 sec measurement, and the value factor is obviously 0 if no peaks exceed 75KHz. The value 0.2 is acceptable as a higher over modulation limit; the value 0.5 shows that the modulation must be reduced of 1dB at least, values higher than K indicates strong over modulations.

For the modulation power, over 10 millions of samplings are performed during the minute of examination and power integral defined in the measurement segment is calculated; the result is compared to the one equivalent to a sine signal which deviates 19KHz; the result of the comparison is expressed in dB and it must not be higher than 0, in order to make the measurement complying with the rule. This limit is debatable and, as it has been described in chapter 7, normally in on-field measurements the values of 2,3dB are found which, after all, we estimate don't cause over modulations.

Since the peak modulation values are random (they depend, besides on the set levels, on the type of musical pieces as well), K or PM values can remarkably vary during the day relating to the type of the transmitted program; it's useful to do many measurements at different times by trying to

measure dance-music rather than spoken. By using the Personal-Computer interfaced with COM1 placed on the front panel it's possible to perform this measurement with many hours of observation periods as it will further be seen.

4.6.16 By entering PAGE UP the following screen shot is accessed:

Here the transmitter internal clock which is used for the memorisation of all the events can be set. At the top the current date appears, the new date at the bottom; in left to right order **month**, **day**, **year**, **hours**, **minutes**, **seconds** appear.

4.6.17.1 By entering PAGE UP the next page is accessed:

By pressing three times the ENTER button, all the alarms in the memory are erased.

By entering PAGE UP, the start position is restored.

CONNECTION DIAGRAM

CIRCUITS DESCRIPTION

5.1 AUDIO-IN board

The AUDIO-IN board has the task to interface the input audio signals with the modulator. Level adjustments are performed on them, as well as pre-emphasis insertion and input impedance selection. The outputs, going through a flat-cable to the mother board, are raised to a high level and made balanced in order not to be interfered with the transformer flow dispersion.

The LEFT and RIGHT signals available on the connectors placed on the rear panel enter, after a first RF noise filter, respectively into U6 and U1. By the U11 switch and the Z1 jumper accessible at the back, the input impedance can be selected (600Ω or $10k\Omega$). A similar function is performed by the jumpers Z3, Z4, Z5, Z6, which allow to select the input nominal value level; on the two channels MONO examined, the switches U13 and U12 change the gain by switching three resistances or a trimmer to put the input level to 0, 4.1, 6dBm or by RT3 and RT4 to a level between -6 and +12dBm. The signal is then the pre-emphatized; the value 50µs or 75µs is chosen by the jumper Z2, while the possible inserting is controlled by the front keyboard. Through U3 and U4 the LEFT and RIGHT channels output is made differential.

The MULTIPLEX external signal path is simpler. On it, it's only adjusted the level at the nominal value by U16, still controlled by Z3, Z4, Z5, Z6. U9 adds up the MPX signal with the two SCA signals and generates the balanced output signal.

Normally, on the SCA signals it's difficult to establish an input nominal level since their contribution to the frequency deviation is variable and depends both on the number of subcarriers between 53 and 100KHz and on the difference about MONO or STEREO transmission. In any case, the total deviation of all the subcarriers (19KHz, SCA1, SCA2) must not exceed 10% of the maximum nominal deviation, which in most cases is \pm 75KHz. If the transmitter is monophonic and only the RDS signal placed in one of the two SCA inputs is present, the deviation level of the transmitted data can reach \pm 7,5KHz; whereas if the transmitter is stereophonic and besides the RDS signal also a lower quality audio channel on a subcarrier is present, for example at 76KHz, the total of each subcarrier deviations can't exceed \pm 7,5KHz. The stereo driving carrier will deviate \pm 4KHz, the RDS signal and the other audio channel will have to deviate, for example, \pm 1,75KHz.

For this reason, it has been preferred to make the SCA channel levels independent between the nominal input one of the audio channels. The adjustment is obtained by RT1 and RT2 trimmers always placed on the rear panel.

All the set levels are showed in the display and the choice to adopt a parameters manual setting related to the input signals level has been preferred to an easier keyboard setting to avoid a non standard levels setting which makes the servicing or the transmitter replacement problematical. The audio signal level errors must not be cleared on the transmitter, but at a former stage. Normally, every broadcasting station fixes a nominal level for all signals and all the adopted equipment must respect this sole value. As higher is this value, as higher will be the noise immunity, and the signal-noise ratio as well.

5.2 SINTD board

SINTD board is placed at the rack centre, directly connected to the mother board from which it can be quickly removed. It has the function of frequency synthesized oscillator (88– 108MHz) modulated by the audio composite signal.

The FET Q1 is the core of the board and oscillates at the set and controlled frequency. All the techniques to obtain high performances in terms of noise and modulation linearity have been adopted. Moreover for a decade EL.CA already have been adopting these circuits solutions (oscillators with coaxial line) for frequencies even till 3GHz for FM transmitters and audio links. Eight varicaps DV1-DV8 modulate the oscillator being driven by the Q2 low output impedance which reduces Nyquist this way wide band noise produced by the variable capacity diodes; at 1MHz between the carrier, the SSB noise is already better than -145dBc, in accordance to ETS-ETSI-300-384. The Q3 transistor reduces the flicker-noise due to the power supply; the D3-D4 series doesn't allow the Q1 saturation, while Q4 and Q5 uncouple the oscillator from the following amplification stages. The U14 output has a power of 10dBm.

The Q6 transistor leads the oscillator signal into the prescaler of the PLL circuit (U4); this integrated circuit performs all the frequency synthesis functions: it's set by U1 ports through the main microprocessor placed on the DLCD board. The reference frequency (10MHz) is produced by Q7; the crystal is kept at a constant temperature by a feedback obtained through U5 and U6; the value 55°C is 5°C higher than the maximum operating temperature, so allowing to obtain a frequency stability lower than a part per million at the environmental working range 0-45°C.

The error amplifier of the phase comparator internal to the PLL chip is composed by U13 and U2 and it has a closed loop cut frequency lower than one Hertz, so that the lowest frequencies of the modulating stereophonic signal can maintain a separation higher than 50dB between the two channels. The modulation, coming from the mother board and from the AUDIO-IN board, is simply added to the VCO error voltage, no linearization has been provided to make the deviation constant versus the output frequency; typically the deviation error is contained within 0,1 dB all over 20 MHz band.

The oscillator has been carefully shielded to avoid that close transmitters could induce spurious frequencies on the output.

5.3 MBA board

The central board has the task to distribute the power supplies and the input and output signals; moreover, the audio filters and the peak-to-peak detector for the different modulation level measurements are implemented in it.

Both the left and the right channel signals coming from the AUDIO-IN board through the J7 connector, pass through an elliptic filter made of precision active components; the bandwidth at 0.1dB is 15KHz and the attenuation over 19KHz is higher than 40dB; no adjustment is provided, the resistances have a precision of 0.1% and the capacitors are selected and high quality type. U3, U4, U5 and U6 make the left channel filter, the right one is symmetrical.

Another elliptic filter of an lower order clean the MULTIPLEX signal by removing the surious signals created by the switching over 600KHz; however this is a typical L-C placed between the two sections of U1. The two further stages formed of U2 make a phase equalizer (RT2) and a amplitude equalizer (RT3) to compensate the DMPX board errors and the previous filter.

The operational amplifier U12 generates the composite signal by adding all the signals; the output of the first section can either enter in the automatic gain control optional board or, in its absence, it enters the U12 second section which acts as a clipper using the saturation and the interdiction of the operational amplifier output circuit. The threshold value is regulated by RT6, this output of this stage enters directly into the frequency modulator placed on the SINTD board.

The U17 switch selects the audio signal to be measured which the level is detected by a peak-topeak detector made by U13, U14, U15. Through the U18 switch, controlled by the DLCD board, the measurement can be of peak or envelope, in accordance to the peak measurements or modulation power.

A circuit made of U22 and U23 disables the output power in case of external command (CE) or synthesizer fault. This function is performed through software also and this circuit represents a security guarantee for such an important function.

5.4 AGC board

The task of this board is to guarantee the maximum allowed modulation where is not sure that the input audio signal has a fixed value. This option can be added to the transmitter at any time and, when it's present, the Z3 jumper placed on the MBA board must be set to ON. Its adjustment, when enabled, is 6dB around the nominal value and it uses 32 gain variation steps of 0.3dB each approx.

The operation is quite simple: a wide band amplifier (U6) has the gain which depends on the R2 - \dots - R33 resistive value; these are switched by U2, U3, U4 and U5, they are controlled at their time by the microcontroller U1. The AGCO output audio signal is detected by U7, U8 and U9 and the peak-to-peak value is measured by the microcontroller, which consequently decides which gain must be given to the amplifier.

The intervention time of the gain variations is not constant, but it's for the input signal value; the gain variation algorithm versus the time is complex in order not to distort the signal, anyhow it's possible to say that, when the signal has a level equal to half of the nominal one, in a couple of minutes approximately or little bit more it's restored to the nominal value. On the opposite, when it has a value which is the double of the set value, it takes just few seconds to reach the nominal value.

On the board it's possible to activate an alarm signal which takes place when the modulation is lower than 10KHz for a period of time longer than two minutes (the level 10KHz has been selected because is a little higher than the value due to the stereo subcarrier). When the modulation absence alarm is on, the output power is removed and the transmitter remains in stand-by until the modulation will be restored.

5.5 HSW board

This circuit provides all the needed voltages for the transmitter operation.

The voltage coming from the rectified output of the power transformer (48V peak) is filtered by the capacitor group C1 - ... - C6 then it's reduced at the 28 Volt value by the switching regulator Q3 which is driven by U2 and U3. RT1 regulates the current limitation from 1A to 5A, while RT2 regulates the output voltage at 28V. U1 and Q2 protect the circuit against accidental short circuits, by switching off the driver supply.

U1, operational amplifier with low offset, measures the current absorbed by the final through the shunt R40 (PAC output).

From the $+28V_{DC}$ voltage which supplies the final by three switching regulators in series, it's obtained $+15V_{DC}$ (U5), $-12V_{DC}$ (U7), $+5V_{DC}$ (U6). The first and the second voltage feed all the transmitter analogue circuits, whereas the third one feeds the LCD display backlight only. The voltage ($+5V_{DC}$) which feeds all the logic circuits is obtained in place, for the low CMOS circuits consumption.

A small voltage transformer TF1 is directly connected to the power, its 9V output is measured by U9 (MX536a), which detects the true effective value and send it through the second section of U6 to the main microprocessor for the control and visualization. The trimmer RT6 is a fine regulation of the measurement.

5.6 40WN and RFDC boards

These board represent the RF power amplifier and the output stage with the directional coupler.

The first two stages adopt typical class A polarized bipolar transistors; here the power adjustment is made by acting on the collector supply. So, by a $0.12V_{DC}$ control, a constant power adjustment in Watt/Volt is obtained, which is very important for a control stability.

The final stage (Q3) is a MOSFET which can deliver more than 60W output; it's B class polarized through RT2. It's neutralized against unwanted oscillations by R21 and R14, R15 and R16. All the circuits are wide band and they do not require any alignment. The adoption of air-coiled inductors has allowed to remarkably reduce the space took by the circuits; moreover all the capacitors used in the output circuit are high quality type. The elliptic low pass filter placed at the output, after the power final stage, removes the harmonics by typically attenuating them more than 80dB.

The inductor L19 short-circuits the final transistor, providing an accurate protection in case of discharges coming from the antenna.

The J2 output of the 40WN module enters the RFDC directional coupler placed in another next metal box. This is made of two lines which are strip-line coupled at -30dB. The forward and reflected power are detected by compensating with accuracy the frequency response of the directional coupler. The continuous voltages so obtained are amplified by U1, which introduces also a thermal compensation to the detecting diodes.

5.7 DLCD board

All the input and output data concerning the transmitter are controlled by the DLCD board, to which also the keyboard and the LCD display control and visualisation board are connected.

A Motorola microprocessor 68HC11 controls the whole transmitter through the J1 and J2 connectors: the keyboard is multiplexed by U6 and U9.

All the values to be measured are fed to the E port with the proper protections against overvoltages or polarity inversions (DZ1 - ... - DZ8 diodes).

A self supplied clock (U21) is connected to the D port through three lines.

The microcontroller serial port is switched by U2 and U25 on the RS232 connector placed on the front panel, on the rear one and on the RS485 port on the rear as well; the driver for RS232 is made of U18 (MAX232), while the one for RS485 is U19 (SN75176).

The ports B, C and F of the μ P are connected to an external 128KB flash memory, where the XPT management program is present, which at any time can be loaded through the front COM1 by any PC.

The G port is for all the outputs (pre-emphasis enabling, mono-stereo, alarms, measurement selection, etc.). The two external outputs for the alarms are uncoupled by two reed relays with closed or opened contacts selected by two jumpers placed on the MBA board (Z1 and Z2).

A part of the H port is used, as output in PWM, to control the forward and reflected power and the fine correction of the transmission frequency. The PWM mean value is detected with accuracy, to avoid errors due to supply voltage variations or saturation and interdiction of the H port outputs.

The operational amplifiers U11, U12, U13 and U14 are part of the powers control circuit The control loop has a cut frequency of several hundreds Hertz, so in few milliseconds the power can be controlled and eventually reduced or eliminated in extreme events. The microprocessor therefore provides to the loop the forward and reflected power reference values, the quantities to be checked are PWR and PWD, coming from the directional coupler, while the over stated operational amplifiers represent the error amplifier.

The LCD display, driven by the A port, is a 40x4 alphanumerical characters type and allows an useful displaying of data and transmitter settings.

ADJUSTMENTS

6.1 Module HSW – power supply

The HSW module, which feeds the whole equipment, has an input voltage of 48Vdc provided from the rectified output of the power transformer, and it provides in output all the needed voltages: +28Vdc, +15Vdc, +5Vdc, - 15Vdc.

Before switching on for the first time the equipment it's necessary to switch off the output connector J1 to adjust and verify all the output voltages. The power supply is placed on the radiator in a vertical position, parallel the transmitter right side. For its adjustment it's necessary to dismantle the right lateral by keeping off the two screws which connect it to the front panel and also the other two screws which connect it to the rear panel.

After the transmitter has been switched on the voltmeter is to be kept on the pin 12 of J1 (output connector) and RT2 will be adjusted to have 28Vdc.

Leading the voltmeter pointer on the pin 13 of J1 RT5 is to be adjusted to have +15Vdc.

Then it must be check that the voltages +5Vdc on the pin 6 and -12Vdc on the pin 7 are right.

Then the voltmeter is to be connected to the 1 of J1 and RT3 is to be adjusted to have offset void (0 V): this is the output for the current measurement absorbed by the RF final.

RT1 must be placed at middle run and it will be adjusted as to limit the final current over 55W output.

Once the adjustments have been done J1 will be connected again observing the XPT normal operating.

The trimmer RT6 is adjusted so that the mains supply voltage measurement (230 or 115Vac) is displayed coinciding to the one that is measured directly on the external line AC power supply.

6.2 40WN Module - RF final power

The RF power module is placed in a vertical position on the radiator, enclosed in a metal box. It's completely in wide band and it doesn't require any component alignment which adapt the input and output impedance of the different stages and antenna.

The only required adjustment is for the final and driver bias current.

The SMB connector at 90° which leads the RF input signal to the power amplifier module must be taken off and the trimmer RT1 is adjusted to have a voltage of 0.3V at the resistance ends R11, which corresponds to a 0.3A current.

Then the RT2 trimmer is adjusted to have a reading of 1A on the display at the correspondence of the PA value visualisation in second page of the main measurements.

6.3 **RFDC module- directional coupler**

On the directional coupler, which is the module connected to the antenna connector and enclosed in a metal box placed on the radiator, four trimmers must be adjusted.

The SMB at 90° angle which drives the RF input signal to the power module is to be disabled and RT4 and RT2 are adjusted, so that the value 0 is displayed on the LCD at the correspondence of the forward and reflected power measurement.

At this moment the input power is to be connected, at 98MHz frequency with a 25W power will be set, it must be connected a thermal wattmeter at the antenna output and RT3 is set to read on the display, at the correspondence of the direct power, the 25W value, read also on the thermal wattmeter.

Then the thermal wattmeter is to be disconnected and replaced with a directional Wattmeter connected without 50Ω charge as to have all the reflected power. A 5W reflected power is to be set and RT2 adjusted to have the same reading on the measurement instrument.

6.4 MBA module - mother board

On the mother board it's possible to perform the modulation width setting, of the stereophonic coded signal levels, the automatic check gain regulation threshold, and the phase compensation and the multiplex signal width.

The mother board receives on three connectors the VCO oscillator module (SINTD), the stereophonic coded module and the automatic check gain module.

Adjust the trimmer RT4 of the MBA board as to have +8Vdc at R7 ends.

Inject a +6dBm signal into the ear MPX input, after the same level in the settings window has been selected, then adjust the RT5 trimmer to read 75KHz on the measurement main page at the modulation correspondence, by TX in MONO.

Inject a 400Hz signal and +6dBm level in the LEFT input, switch into STEREO and adjust RT7 of the MBA board to read still 75KHz deviation also for MPX channel.

Adjust also RT1 if the subcarrier deviation at 19KHz is not the 10% of the total and adjust again the previous RT7 trimmer.

Adjust the RT1 trimmer of the MBA board so that the limitation is symmetrical, on the upper and lower part of the wave form injected with a level higher than 6dB over the nominal.

Adjust the RT6 trimmer of the MBA board to fix the clipper intervention threshold at the required value over 75KHz.

Adjust the RT1 trimmer of the synthesis board to have the exact frequency deviation with the input nominal level presence.

Adjust the RT2 and RT3 trimmer of the MBA board for the maximum stereophonic division.

MODULATION MEASUREMENT

7.1 General information

The broadcast reception at frequency modulation is often made difficult because of the networks exceeding crowding; the interferences due to the adjacent channels makes the listening unpleasant. This inconvenient may be caused by an ignoring of the protection rules mentioned in the REC. ITU-R BS.412-7 of which the remarkable graphs reported below:

The graph shows that if the interfering network is at 300KHz far from the program we are listening, it must have a level higher than the maximum of 7dB, if it's at 200KHz the field intensity level at the point of listening, will be 6dB lower in monophonic or 7dB in stereophonic.

These values, expressed in dB as protection ratio, assume that the interfering network is broadcasting with the maximum allowed spectrum width and this reaches the maximum at the correspondence of peaks and the maximum modulation power. In a laboratory it's possible to simulate the worst example of modulation by modulating the transmitter, instead of dance-music,

with coloured noise as mentioned in the CCIR 559 rule (annex B). The process is described in the IEC 244-13 standard and consists of modulating the transmitter with noise as above, with a deviation equal to 32KHz. This work condition corresponds to the maximum allowed band occupation and to a radio broadcast spreading dance-music which modulates \pm 75KHz.

At these conditions (modulated transmitter with coloured noise in accordance to CCIR-559) there is the chance to have a reference of a radiophonic transmitter at frequency modulation which occupies the maximum allowed spectrum and on which it's possible to perform all the modulation measurements repeatedly, having some parameters as results which can be applied and compared on the field to modulation measurements of a network which is broadcasting a normal music program.

The music signal can not be surely measured by a normal detector with effective or peak value, differently from a fix tone signal. The measurement must be done, being not sinusoidal or other periodical form, detecting the power of the signal self (function proportional to its instantaneous value square) or the peak with very long observation periods.

7.2 Modulation peak analysis measurement

The CEPT 54-01 rule shows, in its paragraph **4.2**, how the peak measurement must be performed on the modulation of a frequency modulation transmitter.

The maximum deviation peak must be found in a 50msec window, to be sure of catching also modulating frequencies till 20Hz. At each minute 1200 representative peak modulation samples are available.

These values, obtained with even many minutes long observation periods, will be placed into a graph in the following manner:

on the abscissas, the frequency deviation will be placed with a deep scale of 150KHz

on the ordinates the number of samples of the corresponding deviation value will be placed

It maybe by extreme examples it's possible to explain the concept better. Suppose to modulate the transmitter with a fix tone having a deviation of ± 75 KHz and to perform the peak measurement in object for a period of 10 minutes. Thus 12000 samples all with the value 75 will be obtained: the graph will be of a single vertical line 12000 high and placed on the abscissa 75 (fig. 5.a).

On the opposite if we modulate the transmitter for 3 minutes with ± 20 KHz deviation, then for further 3 minutes with ± 40 KHz and at last for further 3 minutes with ± 50 KHz and the observation period fixed at 9 minutes we will obtain 10800 samples 3600 of which will have abscissa 30, other 3600 samples abscissa 40 and the last ones abscissa 50 (fig. 5.b).

Now, instead of these simple examples, take our transmitter modulated with the sample noise previously mentioned, and we detect in accordance with the CEPT 54-01 the modulation peak samples in a 30 minutes observation period, so obtaining the graph. **5.c-a** whereas, if we increase the modulation, always with the same input signal, of 1dB, we'll obtain the graph **5.d-a** with a 30 minutes observation period:

fig. 5.d-b

On the first graph it can be observed that during the 30 minutes about 2600 peak samples have been measured which have deviated the carrier of ± 54 KHz, 1500 ± 60 KHz, 10 ± 75 KHz, while about ten samples resulted higher than ± 75 KHz. What has been measured is a signal which respects all the spectrum occupation and over modulation rules; it can be soon noticed that this signal has been higher with its modulation peaks than the threshold of 75KHz for about 0.2% of the samples so it's wrong to sustain that this value is never exceeded at all. Relying for the modulation adjustment on the bar-graph of which almost all the transmitters are equipped, one risks to have to under modulate if the trimmer is set to remain within 75KHz.

In the figures 5.c-b and 5.d-b, as suggested by CEPT 54-01, the "Accumulated distribution plot of deviation" have been reported on the graph, relating to the graphs of the left figures -a and -b ; in this case all the samples from left to right have been added and the samples total value has been normalized.

In other words, starting from left fig. 5.d-a (0KHz) and going towards right (150KHz) it's noticed that all the samples are towards right (100 %) till about 35KHz, to 50KHz over than the 80% of samples is on the right, at 70kHhz just the 5% of samples is on the right, as it has been evidenced on the graphs –b ordinates.

The CEPT 54-01 rule and the equivalent REC. ITU-R SM.1268 and REC. ITU-R BS.412-7, at this point stop and they do not give exact and rigorous information about the interpretation of the graphs mentioned above.

On the opposite by connecting the different rules it's possible to analyse the graphs of fig. 5.c-a and 5.c-b to draw some statistic parameters which, deriving from a reference system, can, as said previously, be applied to a typical music broadcast.

So some quantities will be defined peculiar to the two graphs which will define just one over modulation factor, whose value will be used as limit parameter.

Definitions:

М	:	average of all the measured samples as peak maximum every 50msec
ОМ	:	average of the samples which have exceeded the 75KHz threshold only
OM%	:	samples percentage which has exceeded 75KHz as to the total
K	:	over modulation factor, defined as follows:

K = (OM - 75)*OM% / 100

The formula can be explained easily and intuitively, since the over modulation factor is directly proportional to the peak number percentage detected over 75KHz (OM%), while the ones lower than this threshold must not give any contribution to K, and it's also directly proportional to the peaks KHz value which have exceed 75KHz (OM–75).

If no maximum peaks measured through the 50msec samples has exceeded 75KHz, we are in a favourable condition, OM = 0 and OM% = 0 and so K = 0

If all the peaks exceed 75KHz and their average is 78 then K = (78 - 75) * 100 / 100 = 3

Now getting the example again of the transmitter modulated with coloured noise as to the CCIR-559 and IEC-244 rules previously seen, which has originated the graphs of fig. 5c-a , 5c-b, 5d-a and 5d-b and we apply the above mentioned parameters and calculate them each minute. Thus it will be obtained other graphs which can be added to the two previous couples, so originating a screen shot full of all the parameters relating to the peak modulation measurement:

fig. 5.e

Examine the graphs of. 5.e, which could correspond to the modulation peak analysis of a regular transmitter which doesn't over modulate: in these each minute M, OM, OM% values have been

calculated and consequently the K factor. It can be noticed that K value constantly keeps each minute below the **value 0.01**.

So assume this value as limit for the over modulation factor.

Increasing the modulation of 1dB the graphs in fig. 5.f are given, corresponding to a transmitter which deviates little more than ± 8 KHz; in this case K value is 0.11. Thus it can be noticed that for small modulation values higher than ± 75 KHz, K increases considerably.

The rules rightly have tried to fix some limits for the instruments accuracy which need to perform this kind of measurements, but the system weakness is surely constituted by the receiver, with all its problems concerning the answer to quick transitory and also the peaks, which is almost ever distorted by the medium and low frequency filters group delaying with over elongations or miscompensated attenuation.

So it would be ideal to draw the modulating signal, which is usually available on all the transmitters, performing all the measurements on it, after having made sure of the exact relation between the audio level and the frequency deviation. In the TX50S this is automatic and we think if a modulation peak analysis measurement made far from the transmitter, has produced doubtful and questionable results, it must be repeated by the instrument inside the transmitter like in the TX50S.

The measurement must be started for a whole day observation period so to pick up the programs having most over modulation problems and consequently to act on the dynamic limiter–compressor every study must have. With this measurement method help it's possible to set best the limiter-compressor no longer by ear but by real data and no more subjective elements.

7.3 Modulation power measurement

Another important parameter determining the interference intensity on the adjacent channel is the modulation power value. The term is not of common use and the idea that the modulation power can influence the interferences is not easy to understand.

Reading the CEPT 54-01 rule it's noticed that the transmitter modulation power in object must not exceed the samples reference signal one, represented by a sinusoidal signal which deviates 19KHz of peak. The 19KHz value has no relation with the stereophonic subcarrier value but it's the frequency deviation which the sample signal creates on the transmitter. On the tuned receiver this signal will be carried to the loudspeaker with a certain voltage directly proportional to the deviation value; then there will be a certain electric power on the loudspeaker equal to the effectual voltage square about divided into the loudspeaker impedance; it, at less of the diffuser efficiency, coincides to the acoustic power. So it's possible to believe the modulation power as the equivalent of the acoustic power spread by the loudspeaker, and perceived by our ears.

Thus as for the electric power, the equivalent mathematical rules are valid for the modulation power also. In the first case the value depends on the voltage square, in the second one on the deviation square.

In the case of a sinusoidal quantity, which may be voltage or deviation, the power is calculated for a time equal or multiple the semi period of the wave form, while in the case of a music signal the calculation is to be made by the integral which defines the power. Besides the modulation power value in absolute form would be of a difficult understanding, for this reason any sinusoidal signal is taken as reference whose power, for long observation periods, doesn't depend on the sinusoid frequency but only on its peak value square.

So the rule provides to measure the modulation power, which is as previously seen equal to modulating signal electric power, for one minute time period and to compare it to a sinusoidal modulating signal one which deviates ± 19 KHz. The result, expressed in dB, must be lower or equal to zero to comply the rule.

The modulation power integral calculation is made inside the transmitter by integrating, between 0 and 1 minute, the modulating signal square. The integration is made in a discreet manner by calculating the function area in the integration time; the signal sampling is made at a double speed respecting its bandwidth, so microprocessor is practically locked for a minute to follow instant by instant MPX signal value. After this period it performs the set values square, add them up, which is equal to the integral, then it calculates the logarithm respecting the reference sinusoidal value.

The value is displayed in a numerical form or on a graph (on the PC) which has in the abscissas the time (discreet with 1min steps) and in the ordinates the value in dB of the music signal power and the reference sinusoidal one ratio.

Even in this case it's possible to refer to a modulating signal made of the usual coloured noise in accordance to CCIR-559 particularly Rec.ITU-R BS.412-7 mentions at pag.5-note 4:

The power of a sinusoidal tone causing a peak deviation of 19KHz is equal to the coloured noise modulation signal according to Recommendation ITU-R BS.641, i.e. a coloured noise signal causing a quasi-peak deviation of 32KHz

So, for the modulation power measurement instrument alignment, it's possible to refer either to a 500Hz sinusoidal signal (the frequency is not important) which makes the carrier to deviate of 19KHz or to the coloured noise which deviates 32KHz. Both signals give the listening the same sensation of "volume intensity ", told in non technical words and not considering physiological effects of the ear sensibility at the different frequencies.

7.4 Considerations on the real measurements performed

Performing modulation measurements with the methods described so far on broadcast networks which have been modulating for years without over modulation problems, one realizes how the limits imposed by the rules mentioned so far are particularly restrictive and maybe not in compliance with current reality.

There are some contradictions and gaps the rules self sometimes point out. We report two examples which give the idea of the real difficulty about the strict application of them:

REC. 641, Rep.1064

5. FREQUENCY DEVIATION OF THE SIGNAL GEN. a 500 Hz sinusoidal tone obtained from audio generator A. Attenuator B is then adjusted to obtain a deviation of 32 KHz. The audio frequency level as the input of the unwanted transmitter **before the pre-emphasis** is now measured by means of the noise voltmeter U. The noise-weighting network is switched off. Next, a noise signal C+D replaces the sinusoidal tone, and attenuator E is adjusted to obtain the same peak-reading as before at the noise voltmeter. The quasipeak deviation is thus equal to 32 KHz. Since the preemphasis has not been included in the level measurement, the actual peak deviation is higher. The described adjustment corresponds to the present-day broadcasting practice. *Note. – A normal sound-broadcasting programme without* compression is simulated by modulating the unwanted transmitter with the standardized coloured noise signal using a frequency deviation of 32 KHz. Therefore, the results obtained with this method and this deviation are only valid

for sound broadcasting programmes without compression.

The not considering the pre-emphasis leads to a difference of 1dB about, whereas the audio compressors installed now in every broadcast networks increase the modulation power of 2dB further on.

If a stereophonic signal is being examined the Rec.ITU-R BS.412-7 is very clear and it makes no distinction between the modulation power within monophonic and stereophonic signal:

Rec. ITU-R BS.412-7

2.3 The radio-frequency protection ratios assume that the maximum peak deviation of 75 KHz is not exceeded. Moreover, it is assumed that the power of the complete multiplex signal including pilot-tone and additional signals, integrated over any interval of 60 s is not higher than the power of a MPX signal containing a single sinusoidal tone which causes a peak dev. of 19 KHz (see Note 4)

.....

Note 4 – The power of a sinusoidal tone causing a peak dev. Of 19 KHz is equal to the power of the coloured noise modulation signal **according to ITU-R BS.641** i.e. a coloured noise signal causing **a quasi-peak deviation of 32 KHz**.

Whereas the IEC 244-13 makes a difference between monophonic signal (reference of 32KHz) and stereophonic one (40KHz):

	IEC 244-13	9.4 For monophonic operation
		Check that the pre and de-emphasis filters are in circuit
witch		Adjust the output of the LF generator at $<1KHz$ to a level
wiich		corresponds to a frequency dev. 7.4 dB below maximum rated

deviation (32 KHz for 75 KHz dev.)

Measure the peak value by means of the noise meter at the out of the demodulator (without weighting network).

Switch the LF generator out of circuit and the noise generator in circuit and adjust the output of the noise generator, so that the noise meter gives the same reading. The peak-dev. is now correct.

.....

.....

For stereophonic operation

Check that the appropriate pre and de-emphasis are in circuit Adjust the output of the LF generator at <1KHz to a level corresponding to a frequency deviation of 40 KHz including pilot tone.

Measure the peak value in channel B after the demodulator and stereo encoder by means of the noise meter (without the weighting network).

For the remaining procedure , see the method used for monophonic operation

In case of stereophonic broadcast in accordance to the IEC 244-13 rule the reference power is moved highwards of 1.9 dB in relation to the corresponding REC. ITU-R BS.412-7.

REMOTE CONTROL

8.1 PC connections

The transmitter can be connected to a Personal Computer through a three wires serial cable.

There are three serial ports: the first (COM1), placed on the front panel works as monitor for a connection to a PC, the second (COM2), placed on the back needs for the connection to a possible power amplifier, with the third (COM3) it's possible to connect a modem linked to a telephone line or to do the connection of N+1 transmitters.

The PC must have:

processor	:	PENTIUM o sup.
Operative system	:	WIN3.1 / WIN95 / WIN98
RAM	:	32MB
Non volatile memory	:	32MB
Graphic	:	SVGA 600x800/768x1024
CD reader		

8.2 COM1

If one wishes to connect a PC to replace the transmitter keyboard and thus have a wider and easier communication to every visualisation and control function, it's possible to connect the DB9 front port (COM1) to a serial cable with at least three wires to the serial port of a personal computer where the communicating software provided on the transmitter enclosed CD has been already loaded. If unready it is sufficient to start the SETUP and automatically the software is installed as to create an icon (XPT-50), which will need for the program start.

Once started it will appear on the display:

RS232 FRONT

CDM1 > DN

The screen cursor which displays the modulation will be still and the low left inscription RS232 Connection will show: **not connected**. At this point it is essential, after the transmitter has been switched on, to make it communicate.

So the transmitter keyboard blue button marked as REMOTE 232 must be entered The following page will appear on the display:

which indicates that by default the COM1 connection has been chosen instead of the COM3 and on the COM2 no power amplifier is connected.

press data to change and enter

-choice your remote control

RS232 REAR RS485 REAR COM2 > OFF COM3 > OFF

If on the COM2 an amplifier was connected automatically it would be detected and its caption would appear beside the COM2 one.

If a modem connected to the telephone line is to be connected it needs to select by the horizontal cursor and the data key the COM3.

If the selected options are right, pressing ENTER the communication to the PC connected to the COM1 is entered, the blue key led switches on, on the display the cursor moves from left towards right, displaying the modulation peaks as an oscilloscope and the caption **connected** will appear on the left bottom.

The first page is just an introduction to the system, of which it's possible to know the options installed or the hour of the last switching on. At the right bottom of the display there is a grey window with an arrow and if it is entered it's possible to enter into the following pages:

BROADCASTING DIVISION	TX50S	broadcasting FM tra	ansmitter				
	SUMMARY TRANSMITTER DATA						
Output Frequency Mhz	99,90	Audio Input Level dBm	6				
RF Forward Power W	2,6	Audio Modulator	MONO				
RF Reverse Power W	0,0	Pre-emphasis Value usec	50				
Composite Modulation Khz	45	Pre-emphasis Status	OFF				
Heatsink Temperature °C	32	External Carrier Enable	ON				
External Line Voltage V	214	Internal Carrier Enable	ON				
PLL Lock	ON	Serial Communication Port Com1	ON				
Audio AGC	ON	Serial Communication Port Com2	OFF				
RS232 Connection	Connected	Serial Communication Port Com3	OFF				
PRINT		SUMMARY TRANSMITTER DATA	ARM(S) 3				
<							

The second page allows to know all the transmitter operation data: frequency–power etc., without the possibility to modify them. Choosing by the lower arrow the third page the data displaying of the input low frequency signal and modulation can be entered:

BROADCASTING DIVISION	TX50S	broadcasting FM transmitter
MODULATION MEASU	RES	
Audio Modulator	MONO	150-
Modulation Selection	COMPOSITE	125-
Audio Automatic Level Control	ON	125-
Modulation Absence Alarm	OFF	100-
Pre-emphasis Status	OFF	75-
Pre-emphasis Value usec	50	at the sheart the state of the state of the second
Audio Input Level Set dBm	б	50-HANNAN HWUMANA MANNANA MANANANANANANANANANANANANAN
MODULATION SETTI	NGS	25-
Audio Modulator	MONO	0-
Modulation Selection	COMPOSITE	
Audio Automatic Level Control	ON	11 (12) 2-23 (14)
Modulation Absence Alarm	OFF	PRINT
Pre-emphasis Status	OFF	MEASURES & MODULATION SETTING
DATA SETTING ENTER	C.	ALARM(S) 3

All the pages have different coloured windows to divide the width measurements from the setting of them. On the top of this page it's possible to check which channel is displayed on the screen shot (COMPOSITE); to change this display because, for example, one wants to check the LEFT course, one must enter the lower window (MODULATION SETTINGS), and press "DATA SETTING ENTER". The red button will switch on, the modulation will disappear and changing in the window "Channel Modulation", the respective changes will be displayed on the higher window too. When the chosen data are the requested ones it's possible to switch the red button off and the normal displaying will be restored.

Selecting the fourth page the power settings are entered:

BROADCASTING DIVISION	► broadcasting FM transmitter
RF POWER MEASURE	RF AMPLIFIER PARAMETERS
Forward Power W 2,6	Power AmplifierVoltage V 27
Reverse Power W 0,0	Power Amplifier Current A 0,6
Internal Carrier Enable ON	Heatsink Temperature °C 34
External Carrier Enable ON	Maximum RF Output Power W 50
RF POWER SETTING	COMMUNICATION STATUS
Forward Adjustment W 2,5	RS232 Connection Connected
Upper Forward Limit W 50 Upper Reverse Limit W 5,0	Personal Computer Time 12.33.15
Internal Carrier Enable ON	Data setting enter
PRINT	POWER. MEASURES & SETTINGS

Here also the settings are distinguished from the measurements by a different colour.

To change data it is sufficient to press the red button, which will lighten, and will change data in the RF POWER SETTING window. At every new setting a changing of the measurement displayed above will correspond. On the top right window also the power final stage parameters are reported.

Choosing the next page there will be:

BROADCASTING DIVISIO	TX50S	broadcasting FM transmitter
CLOCK & FREQUENC	Y VALUES	CLOCK & FREQUENCY SETTINGS
RF Frequency Out Mhz	99,90	RF Frequency Out Mhz 99,90
Fine Frequency Correction Numb	er 100	Fine Frequency Correction Number **
Transmitter Date & Time	00/02/00 20:22	mm/dd/yy hhmm Transmitter Date & Time 00/02/00 20:22
Computer Date & Time	09/28/00 14.23	Date & Time Transmitter Set OFF
RS232 Connection	Connected	Frequency-Clock Setting ENTER
		**Fine frequency Correction Number must be >=0 and <=255 for frequency adjustement about +/- 2kHz referred to frequency carrier (aging quartz correction). CLOCK & FREOUENCY SETTINGS
PRINT		ALARM(S) 3

Here the transmitter clock settings and frequencies can be changed.

Differently from the previous pages, here the variations cannot be performed in real time, to avoid the transmitter goes on unwanted frequencies. So, at first data must be inserted then the red button must be pressed to enter them. During the frequency change power is disabled for few seconds and the oscillator anomalous condition is not stored as alarm. If an out-of-channelization frequency is entered, the item is ignored.

It is also possible a fine frequency correction, to correct the crystal ageing by inserting a number included between 0 and 255 and checking by a frequency-meter connected to the RF monitor.

The following page allows the alarm displaying and erasing:

PHASE LOCKED LOOP OSCILLATOR CHANGED FROM LOCKED STATE TO UNLOCKED STATE et .01/00 22:15 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE et .01/00 22:26 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO UNLOCKED STATE et .01/00 22:26 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO UNLOCKED STATE et .01/00 22:41 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE et .01/00 22:41 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE et .01/00 22:41 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE et .01/00 22:41 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE et .01/00 22:42 Image: Image	ROADCASTING DIVISION	TX50S	broadcasting FM transmitter	8
PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE at .01/00 22:15 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM LOCKED STATE TO UNLOCKED STATE at .01/00 22:26 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO UNLOCKED STATE at .01/00 22:41 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO UNLOCKED STATE at .01/00 22:41 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE at .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE at .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE at .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE at .01/00 22:42		larms List		
PHASE LOCKED LOOP OSCILLATOR CHANGED FROM LOCKED STATE TO UNLOCKED STATE at .01/00 22:26 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE at .01/00 22:26 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO UNLOCKED STATE at .01/00 22:41 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE at .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE at .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE at .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE at .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE AT .01/00 22:42	PHASE LOCKED LOOP OSCILLATOR CHA	NGED FROM LOCKED STATE	E TO UNLOCKED STATE at ,01/00 22:15	
PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE et .01/00 22:40 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO UNLOCKED STATE et .01/00 22:41 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE et .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE et .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE et .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE et .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE et .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE et .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE ET .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE ET .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE ET .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE ET .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE ET .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE ET .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE STATE .01/00 22:42 PHASE LOCKED STATE S	PHASE LOCKED LOOP OSCILLATOR CHA	NGED FROM UNLOCKED ST	ATE TO LOCKED STATE at .01/00 22:15	
PHASE LOCKED LOOP OSCILLATOR CHANGED FROM LOCKED STATE TO UNLOCKED STATE at .01/00 22:41 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE at .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE at .01/00 22:42 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE at .01/00 22:42	PHASE LOCKED LOOP OSCILLATOR CHA	NGED FROM LOCKED STATE	E TO UNLOCKED STATE at .01/00 22:26	
PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE at .01/00 22:41 PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE at .01/00 22:42 Image: Contract of the state of the stat	PHASE LOCKED LOOP OSCILLATOR CHA	ANGED FROM UNLOCKED ST	ATE TO LOCKED STATE at .01/00 22:26	
PHASE LOCKED LOOP OSCILLATOR CHANGED FROM UNLOCKED STATE TO LOCKED STATE at .01/00 22:42	PHASE LOCKED LOOP OSCILLATOR CHA	NGED FROM LOCKED STATE	E TO UNLOCKED STATE at ,01/00 22:41	
ALARMS SHOW	PHASE LOCKED LOOP OSCILLATOR CHA	ANGED FROM UNLOCKED ST	ATE TO LOCKED STATE at .01/00 22:41	
	PHASE LOCKED LOOP OSCILLATOR CHA	ANGED FROM UNLOCKED ST.	ATE TO LOCKED STATE at ,01/00 22:42	
	10			
	Alarms Reset			
	PRINT	OFF	ALARM(S)	3

The quantities controlled by this function are:

MAINS SUPPLY VOLTAGE

CURRENT ON THE RF FINAL

VOLTAGE ON THE RF FINAL

RF FINAL RADIATOR TEMPERATURE

MODULATION ABSENCE

SYNTHESIZED OSCILLATOR ANOMALOUS OPERATING

EXTERNAL CARRIER ENABLE

Whenever the limits joined to each quantity mentioned above are exceeded, the output power is taken off, a visual signalling and ON/OFF contacts are given and the event is stored and associated to the date when it has occurred.

Besides the ceased alarms are stored as to know the output power absence period.

As for the keyboard, the alarms can be erased.

The last pages are dedicated to the modulation analysis measurement (power and peak):

BROADCASTING DIVIS		TX50S	broadca	sting FM		er
	POWE	R MODULATIO	N ANALYSIS	Start 7	Time 2000-09-28	16.39
POWER MODULATION VALUES [db]	PM [dB]					
	3,0-					
Last value Hour	2,8-					
1,81	2.6-					
	2,4~					
Max value Hour	2,2-					
3,11	2,0-					
Min value Hour	1,8-					
Min value <u>Hour</u> 1,01 16:46	1,6-					
	1,4-					
Average value	1.2~					
1,92	1,0-,	3 4	5 6	7 8	9 10	11 min
Elapsed Time	hb:mm	piess (c	POWER MODULAT	PLON A MAL VEIC	PRINT	SAVE
hours minutes		11 START Time Help	FOWER MODULA		ALARM(S)	3
	Analysis	Time Help				

As appendix the whole theory concerning this kind of measurements is dealt in chapter 7, dedicated to the modulation measurements.

In the upper graphs the peak modulation statistic parameters of a broadcast network observed during 10 minutes period are reported. It can be observed that the 12000 peak measurement samples detected lead to consider that the network is on the limit of the allowed deviation; the last K diagram clearly shows the spoken broadcasting for the first two minutes followed by a music passage (K>4), at the end other two minutes spoken (K<3).

By entering HELP on the window the followed rule appears (CEPT 54-01). The observation time period is edited in ANALYSIS TIME followed by START.

TX50S INTERNAL ADJUSTMENTS & SETTINGS

See figg. 9.a , 9.b , 9.c for function number

N°	Board name/ Component	FUNCTION	DESCRIPTION		
0	MBA/RT7	MPX frequency deviation	Adjust, with nominal MPX input level, for 75 Khz frequency deviation		
1	DMPX/C22	Pilot frequency	Adjust stereo subcarrier to 19 Khz +/-1Hz		
2	DMPX/RT1	Pilot level	Adjust to 20dB less than MPX signal		
3	DMPX/RT3	Pilot phase	Adjust to the right phase by antiphase tecnique		
4	DMPX/RT2	MPX spurious	Adjust for minimum spurious of MPX signal		
5	DLCD/Z1	Run/Boot	Set jumper to RUN for normal operation, to BOOT for firmware loading (by COM1)		
6	DLCD/P9	MCU reset	Press button to Reset 68HC11 microcontroller		
7	DLCD/BT1	Clock battery	Use only 3.3 V lithium battery (WARNING:TOXIC COMPONENT)		
8	DLCD/Z2	Password	Set jumper to PASSW. to enable password function.		
9	MBA/RT5	Freq.dev.display	Adjust to display modulation = 75 Khz on Page 0		
10	MBA/RT4	Pilot THD	Adjust to minimum pilot THD		
11	AGC/RT1	AGC level input	Adjust, with nominal LF level input, DC voltage on DZ1 to 2.6V		
12	MBA/RT1	Clipper symm.	Adjust for clipper symmetry		
13	MBA/RT6	Clipper level	Adjust to the desired clipper level		
14	MBA/RT2	Chan. separation	Adjust for max channel separation		
15	MBA/RT3	Chan. separation	Adjust for max channel separation		
16	SINTD/RT1	Mono frequency deviation	Adjust, with nominal mono audiolevel in MPX input, for 75 Khz deviation		
17	SINTD/CV1	Frequency	Adjust to right output frequency with fine frequency number set to 100		
18	HSW/RT6	Line voltage meas.	Adjust to display on page 0 line voltage measured between M2 connector pins on HSW board		
19	HSW/RT3	PAC meas.	Adjust to 0Vdc on PAC (J1-1) without connector		
20	HSW/RT2	+28Vdc	Adjust to 28 Vdc (J1-12)		
21	HSW/RT5	+15Vdc	Adjust to 15 Vdc (J1-13)		
22	HSW/RT1	PAC limiter	Rotate completely clockwise for Ilim>5A (max value)		
23	RFDC/RT2	PWR offset	Adjust to obtain (without RFin) 0Vdc on PWR feedthrough		
24	RFDC/RT1	PWR meas.	Adjust to read on display (without RF load) PWD=PWR (PWR set = 5W)		
25	RFDC/RT3	PWD meas.	Adjust to obtain Pout = $50W$ (PWD set = $50W$)		
26	RFDC/RT4	PWD offset	Adjust to obtain (without RFin) 0Vdc on PWD feedthrough		
27	40WN/RT2	Final RF mosfet current meas.	Adjust to read (without RF) PACurrent=1A on display page1		
28	40WN/RT1	Driver current	Adjust to obtain (without RF) 35mVdc voltage drop on R11		

TX50S REAR CONNECTIONS & SETTINGS

See fig. 9.d for function number

N°	FUNCTION		CONNECTION
1	AUX IN/OUT	PIN NUMBER (DB9)	1NC2NC3NC4NC5GND6EXTERNAL PWD7EXTERNAL PWR8NC9NC
2	AES/EBU IN	PIN NUMBER (DB9)	1 NC 2 NC 3 NC 4 NC 5 GND 6 I1 7 I2 8 NC 9 NC
3	COM2 RS232 to power amplifier	PIN NUMBER (DB9)	1 NC 2 RX (amplifier) 3 TX (amplifier) 4 NC 5 GND 6 NC 7 NC 8 NC 9 NC
4	COM3A RS485 to remote control (external Modem) or N+1 system	PIN NUMBER (DB9)	1 NC 2 INPUT RS485 + 3 INPUT RS485 - 4 NC 5 GND 6 NC 7 NC 8 NC 9 NC

N°	FUNCTION		CONNECTION
5	COM3B RS485 to N+1 system	PIN NUMBER (DB9)	1 NC 2 INPUT RS485 + 3 INPUT RS485 - 4 NC 5 GND 6 NC 7 NC 8 NC 9 NC
6	IN/OUT	PIN NUMBER (DB9)	1 19 Khz sync. out (1 Vpp out) 2 EX Carrier enable input (input contact open = enable) 3 ALARM1 out (closed or open output contact / Z1, Z2 - MBA board) 4 ALARM2 out (closed or open output contact / Z1, Z2 - MBA board) 5 GND 6 NC 7 NC 8 NC 9 NC
7	EXTERNAL MONO / MPX INPUT ADJUSTMENT		nmer RT5 / AUDIO IN board n adj. for 75 Khz modulation frequency
8	SUBCARRIER 1 INPUT ADJUSTMENT	Trit	nmer RT1 / AUDIO IN board -20 dBu adj.
9	SUBCARRIER 2 INPUT ADJUSTMENT	Trir	nmer RT2 / AUDIO IN board -20 dBu adj.
10	NOMINAL VALUE LF INPUT SETSETTING		s Z3,Z4,Z5,Z6 / AUDIO IN board variable (-6/+12) dBm setting choice
11	PREEMPHASIS VALUE CHOICE		pers Z8,Z2 / AUDIO IN board i0 / 75 microseconds choice
12	MONO INPUT (L / R) IMPEDENCE CHOICE		pers Z1,Z7 / AUDIO IN board 500 Ohm / 10 Kohm choice
13	LEFT INPUT ADJUSTMENT		nmer RT4 / AUDIO IN board n adj. for 75 Khz modulation frequency
14	RIGHT INPUT ADJUSTMENT		nmer RT3 / AUDIO IN board adj. for 75 Khz modulation frequency
15	SCA1 & SCA2 INPUTS		BNC connector
16	EXTERNAL MPX INPUT		BNC connector
17	LEFT INPUT	PIN NUMBER (Cannon)	1GND2LEFT + (unbalanced with GND)3LEFT - (balanced with LEFT+)
18	RIGHT INPUT	PIN NUMBER (Cannon)	1GND2RIGHT + (unbalanced with GND)3RIGHT - (balanced with RIGHT+)
19	RF OUT		N connector

Fig. 9.d

DIAGRAMS AND LAYOUTS

HSW BOARD - POWER SUPPLY

HSW BOARD - POWER SUPPLY

HSW BOARD - POWER SUPPLY

lqty	part	number Val	Tol	Work	.Volt. desc		
	1	BAR10	I	I	I	diode D10	
	1	CCM_1u		•	1	Multilayer Ceramic Capacito C8	
	11	CCM_1u	•	•	1	Multilayer Ceramic Capacito C22	
	1	CCM_1u		•	1	Multilayer Ceramic Capacito C23	
	1 1	CCM_1u	•	•	1	Multilayer Ceramic Capacito C26 Multilayer Ceramic Capacito C31	
	11	CCM 1u			1	Multilayer Ceramic Capacito (C36)	
	11	CCM 2n2			i	Multilayer Ceramic Capacitor C14	
	11	CCM 2u2			i	Multilayer Ceramic Capacitor C20	
	1	CCM 2u2			i	Multilayer Ceramic Capacitor C29	
	1	CCM 3n3			i	Multilayer Ceramic Capacitor C9	
12	1	CCM_10n	10n	10%	I	Multilayer Ceramic Capacitor C11	
13	1	CCM_56p	56p	5%	1	Multilayer Ceramic Capacitor C10	
14	1	CCM_100n	100n	10%	1	Multilayer Ceramic Capacitor C7	
	1	CCM_100n	100n	10%	I	Multilayer Ceramic Capacitor C13	
	1	CCM_100n		•	1	Multilayer Ceramic Capacitor C21	
	11	CCM_100n			1		[C19]
		CCM_100n		•	1		[C39]
	1 1	CCM_100n		•	1		C30
	1 1	CCM_100n CCM_100n			1		C37 C38
	1 1	CCM 100n					C46
	11	CCM 100p			i		C12
	11	CCM 220n	-				[C32]
	11	CEV 10u-25V			25V	ALUM. RADIAL ELCTROLYTIC CAPACITOR	
	11	CEV 10u-25V			25V	ALUM. RADIAL ELCTROLYTIC CAPACITOR	
27	11	CEV 10u-25V			25V	ALUM. RADIAL ELCTROLYTIC CAPACITOR	
	1	CEV_47u-25V_EKR			25V		C45
29	1	CEV_47u-25V_EKR	47u	20%	25V	1	C33
30	1	CEV_47u-25V_EKR	47u	20%	25V	I	C34
	1	CEV_47u-25V_EKR	47u	20%	25V	1	C35
	1	CEV_47u-25V_EKR	47u	20%	25V	1	C43
	1	CEV_47u-25V_EKR			25V		C41
	1	CEV_47u-25V_EKR			25V		C44
	1	CEV_47u-25V_EKR			25V		C42
	11	CEV_220u-25V_EKR			25V	ALUM. RADIAL ELCTROLYTIC CAPACITOR	
	1	CEV_220u-25V_EKR			25V	ALUM. RADIAL ELCTROLYTIC CAPACITOR	
	1	CEV_220u-63V_EKR			63V	ALUM. RADIAL ELCTROLYTIC CAPACITOR	
	1 1	CEV_220u-63V_EKR			63V	ALUM. RADIAL ELCTROLYTIC CAPACITOR	
	1 1	CEV_220u-63V_EKR CEV_220u-63V_EKR			63V 63V	ALUM. RADIAL ELCTROLYTIC CAPACITOR ALUM. RADIAL ELCTROLYTIC CAPACITOR	
	11	CEV 470u-35V			35V	ALUM. RADIAL ELCTROLYTIC CAPACITOR	
	11	CEV 1000u-100V			1100V	ALUM. RADIAL ELCTROLYTIC CAPACITOR	
	11	CEV 1000u-100V			100V	ALUM. RADIAL ELCTROLYTIC CAPACITOR	
	11	CEV 1000u-100V			100V	ALUM. RADIAL ELCTROLYTIC CAPACITOR	
	11	CEV 1000u-100V			100V	ALUM. RADIAL ELCTROLYTIC CAPACITOR	
	11	CEV 1000u-100V			1100V	ALUM. RADIAL ELCTROLYTIC CAPACITOR	
48	1	CEV_1000u-100V	1000u	20%	100V	ALUM. RADIAL ELCTROLYTIC CAPACITOR	[C6]
49	1	DROP_NC	I	L	I	1	Z2
50	1	IRF540	I	L	1	N-Channel Power MOSFET TO220	Q3
51	1	IR2125	I	I	I	CURRENT LIMITING CHANNEL DRIVER	U3
	1	J156X14	I	I	I	Connettore Passo 3.96mm (156th) 14	
Poli							
	11	LM3578	1	•	1		U2
	1	LTUBE-D8P5	•	1	1	Inductor Tube Diametro 8.5mm Passo	
	1	LTUBE-D8P5	1mH	1	1	Inductor Tube Diametro 8.5mm Passo	
	1	LTUBE-D8P5	1mH	1	1	Inductor Tube Diametro 8.5mm Passo	
	1 1	LTUBE-D8P5 LTUBE-D8P5	22uH 22uH	•	1	Inductor Tube Diametro 8.5mm Passo Inductor Tube Diametro 8.5mm Passo	
	1 1	LTUBE-D8P5	220H 1mH	•	1	Inductor Tube Diametro 8.5mm Passo	
	11	LT1074CT	1	•	1		U7
	•	LT1074CT		•	i	-	1051
	1	LT1376-5	i	•	i	1.5A, 500KHz STEP-DOWN SWITCHING RI	
	1	L TORO 100uH	100uH	•	i		L2
	•	L_TORO_100uH	100uH	•	i	-	114
65	1	L_TORO_250uH	250uH	L	Î.		L1
66	1	L_TORO_250uH	250uH	L	i i	TOROIDE AVVOLTO 250uH 5 AMPERE	113
67	1	MBR1045	I	I	L		D4
	1	MBR1045	I	•	I		D6
	1	MM_02V	I	•	I.		M2
	1	MM_05V	1	•	1		[M1]
	1	MPSA06	1	•	1		Q2
	1	MPSA06	!	•	1		Q1
	1	MX536A	•	•	1		[U9]
	11	OP07N	1	•	1	ULTRA-LOW-OFFSET-VOLTAGE OPERATION	
	1	RFILM5W			1	Film Resistor Mounted with dissipat	
	1	RFILM5W			1	Film Resistor Mounted with dissipat	
	1 1	RFILM5W	•			Film Resistor Mounted with dissipat	
	1 1	RT_72P RT 72P			1	Trimmer Cermet Monogiro serie 72P Trimmer Cermet Monogiro serie 72P	
	1 1	RT_72P	•		1	Trimmer Cermet Monogiro serie 72P	
	11	RT 3296W			1	Trimmer Cermet Multigiro serie 329	

ć	ē						TX5
RECA	DEASTING	DIVISION					
82	11	RT 3296W	1500	10%	I.	Trimmer Cermet Multigiro serie 329	96W Bourns RT2
83	1	R05-J-68R	68R	5%	Ì	RESISTOR - Metal Film	R18 COD
84	11	R05-J-68R	68R	15%	i	RESISTOR - Metal Film	R17 COD
85	11	R025-J-1K0	1K0	15%	İ	RESISTOR - Metal Film 0.25 W	[R26]
86	1	R025-J-1K0	11K0	5%	Ì	RESISTOR - Metal Film 0.25 W	[R29]
87	11	R025-J-1K0	11K0	15%	i	RESISTOR - Metal Film 0.25 W	[R33]
88	1	R025-J-1K2	1K2	5%	1	RESISTOR - Metal Film	[R16]
89	11	R025-J-1K5	11K5	15%	i i	RESISTOR - Metal Film	R21
90	1	R025-J-2K2	2K2	5%	I.	RESISTOR SMD 0805	R8
91	1	R025-J-2K2	2K2	5%	Ì	RESISTOR - Metal Film	[R10]
92	11	R025-J-2K2	2K2	15%	İ	RESISTOR - Metal Film	R41
93	1	R025-J-2K7	2K7	5%	Ì	RESISTOR - Metal Film	[R15]
94	11	R025-J-2K7	2K7	15%	i i	RESISTOR - Metal Film	[R20]
95	1	R025-J-3K3	4K7	5%	I.	RESISTOR - Metal	
103	11	R025-J-10K	10K	15%	i i	RESISTOR - Metal Film	R30
104	1	R025-J-10K	10K	5%	I.	RESISTOR - Metal Film	R35
105	11	R025-J-10K	10K	15%	Ì	RESISTOR - Metal Film	[R37]
106	11	R025-J-15K	15K	15%	i	RESISTOR - Metal Film	[R31]
107	11	R025-J-22K	22K	15%	1	RESISTOR - Metal Film	[R22]
108	11	R025-J-22K	22K	15%	İ	RESISTOR - Metal Film	[R36]
109	11	R025-J-47R	47R	15%	Ì	RESISTOR - Metal Film	[R9]
110	11	R025-J-56K	56K	15%	İ	RESISTOR - Metal Film	R7
111	1	R025-J-000	0R82	5%	Ì	RESISTOR - Metal Film	R44
112	11	R025-J-100K	100K	15%	i	RESISTOR - Metal Film	[R13]
113	1	R025-J-100K	115K	15%	i	RESISTOR - Metal Film	[R19]
114	11	R025-J-100K	100K	15%	Ì	RESISTOR - Metal Film	[R38]
115	11	R025-J-100K	100K	15%	İ	RESISTOR - Metal Film	R45
116	11	R025-J-100R	100	15%	Ì	RESISTOR - Metal Film	R24
117	11	R025-J-100R	1100	15%	i	RESISTOR - Metal Film	[R23]
118	1	R025-J-270R	270R	15%	i	RESISTOR - Metal Film	[R25]
119	11	R025-J-270R	270R	15%	i	RESISTOR - Metal Film	[R32]
120	11	R025-J-270R	270R	15%	i	RESISTOR - Metal Film	[R39]
121	11	R025-J-390R	390R	15%	Ì	RESISTOR - Metal Film	[R43]
122	11	R025-J-560R	820R	15%	İ	RESISTOR - Metal Film	R42
123	11	R025-J-680R	680R	15%	Ì	RESISTOR - Metal Film	[R2]
124	11	R025-J-680R	680R	15%	i	RESISTOR - Metal Film	[R28]
125	1	TLC27L2N	1	i i	i	Precision Dual Operational Amplifi	
126	11	TMP37	i i	i.	v		U10
127	11	TP1 1	i	i	İ		[R18A]
128	11	TP1 1	i i	i.	Ì		[R17A]
129	11	TRF ELCA01	i	i	İ		TF1
130	11	ZPD5V1	i i	i.	Ì	Zener Diode 0,5 W - 5.1 V	DZ3
131	11	ZPD12V	i i	i	i	Zener Diode 0,5 W - 12V	DZ2
132	11	ZPD15V	i	i	İ	Zener Diode 0,5 W - 12V	DZ1
133	1	1N4001	i i	i.	Ì	General Purpose Rectifier	[D2]
134	11	1N4001	i	Ì	Ì	General Purpose Rectifier	D5
135	11	1114148	i i	i i	I	General Purpose Rectifier 0,1 A	[D3]
136	11	1N4148	i	i	i	General Purpose Rectifier 0,1 A	D9
137	1	1N5818	i.	i.	i.	Diode Schottky 3A	[D7]
138	11	1105818		1	1	Diode Schottky 3A	[D8]
139	11	74HC14N	i	Ì	Ì	IC, Hex Inverter Schmitt-Trigger	U1
	•	-		•			

AUDIOIN BOARD - AUDIO INPUTS

AUDIOIN BOARD- AUDIO INPUTS

AUDIOIN BOARD- AUDIO INPUTS

item 1		part number	Val	Tol	WORK.VOLT.	description	1 76 1
1	1	BERG100F1X06V	1	1	1	Physical Connector	J6
2	1	BERG100M1X02V	!	!	1	Physical Connector	J2
3	1	BERG100M1X02V	1	1	1	Physical Connector	J3
4	1	BERG100M1X03V	1	!	!	Physical Connector	J4
5	1	BERG100M1X05V		1		Physical Connector	J5
6	1	CPVP_6n8_63V	6n8	110%	63V	capacitor	C19
7	1	CPVP_6n8_63V	6n8	10%	63V	capacitor	[C20]
8	1	C1210_1n	1n	20	1	capacitor	[C7]
9	11	C1210_1n	1n	120	1	capacitor	C2
10	1	C1210_1n	1n	20	I	capacitor	C1
11	11	[C1210_1n	1n	20	1	capacitor	[C3]
12	1	[C1210_1n	1n	20	I	capacitor	C8
13	11	[C1210_1n	1n	120	1	capacitor	C4
14	1	C1210_1n	1n	20	I	capacitor	[C5]
15	1	C1210_1n	1n	20	I	capacitor	C6
16	1	C4051BD	1	I	I	Multiplexer, Analog 8-Bit	012
17	1	C4051BD	I	I	I	Multiplexer, Analog 8-Bit	[U13]
18	1	C4051BD	1	I	I	Multiplexer, Analog 8-Bit	[U16]
19	1	C4052BD	1	I	I	Multiplexer, Analog Dual 4-Bit	011
20	1	C4052BD	1	I	1	Multiplexer, Analog Dual 4-Bit	U14
21	1	C4052BD	1	I	1	Multiplexer, Analog Dual 4-Bit	U15
22	1	C4532BD	1	I	I	Decoder, 3-to-8 Line	017
23	1	JFL_26M	1	1	I	Connector Flat 26 pins	J1
24	1	LL4148	1	I	1	diode	D14
25	1	 LL4148	1	1	1	diode	D7
26	1	LL4148	I	1	I	diode	D9
27	1	 LL4148	1	1	I	diode	[D8]
28	1	 LL4148	1	1	I	diode	D2
29	1	LL4148	1	I.	I	diode	[D3]
30	1	 LL4148	I	1	I	diode	[D10]
31	1	LL4148	1	I.	I	diode	D11
32	1	 LL4148	I	1	I	diode	D1
33	1	LL4148	1	I.	I	diode	D4
34	1	LL4148	1	1	1	diode	[D12]
35	11	LL4148	i i	i i	Ì	diode	[D5]
36	1	LL4148	1	1	1	diode	[D13]
37	11	LL4148	i i	i i	i i	diode	[D6]
38	11	L1812 1mH	1mH	i	i	inductor	[L7]
39	11	L1812 1mH	1mH	i i	i i	inductor	[L6]
40	11	L1812 1mH	10uH	i	i	inductor	[19]
41	1	L1812 1mH	10uH	1	1	inductor	[L2]
42	11	L1812 1mH	10uH	i i	Ì	linductor	L1
43	1	L1812 1mH	10uH	1	1	inductor	L3
44	11	L1812 1mH	10uH	i i	i i	inductor	L4
45	11	L1812 1mH	10uH	i	i	inductor	115
46	11	L1812 1mH	10uH	i i	i i	inductor	[L8]
47	11	PIN WIRE	i	i	i	Pin Wire	W5
48	11	PIN WIRE	i i	i i	i i	Pin Wire	W6
49	11	PIN WIRE	i	i	i	Pin Wire	W7
50	11	RT 72P	10K	10%	i i	resistor	RT1
51	11	RT 72P	10K	10%	i i	resistor	RT2
52	11	RT 72P-20K	20K	10%	i	resistor	RT3 COD
53	1	RT 72P-20K	20K	110%	1	resistor	RT4 COD
54	j1	RT_72P-20K	20K	10%	i	resistor	RT5 COD
55	11	R1206-F-2K22	2K22	118	i i	resistor	R44
56	11	R1206-F-2K22	2K22	18	Ì	resistor	[R49]
57	1	R1206-F-2K22	2K22	18	L	resistor	[R39]
58	1	R1206-F-2K22	2K22	18	I	resistor	[R31]
59	j1	R1206-F-2K22	2K22	118	I	resistor	[R30]
60	11	R1206-F-2K22	2K22	18	L	resistor	[R28]
61	j1	R1206-F-2K22	2K22	118	I	resistor	[R46]
62	1	R1206-F-2K22	2K22	18	1	resistor	[R35]
63	11	R1206-F-2K22	2K22	18	i	resistor	[R34]
64	11	R1206-F-2K22	2K22	118	i i	resistor	[R37]
65	11	R1206-F-2K22	2K22	18	i i	resistor	[R36]
66	j1	R1206-F-2K22	2K22	118	i	resistor	[R29]
67	11	R1206-F-2K22	2K22	18	i i	resistor	[R38]
68	1	R1206-F-2K22	2K22	11%	i i	resistor	[R40]
69	1	R1206-F-2K22	2K22	18	I.	resistor	R41
70	11	R1206-F-2K22	2K22	118	Í.	resistor	[R50]
71	1	R1206-F-2K22	2K22	18	I.	resistor	[R85]
72	1	R1206-F-2K22	2K22	11%	i i	resistor	[R86]
73	11	R1206-F-2K22	2K22	11%	i	resistor	[R83]
74	11	R1206-F-2K22	2K22	11%	i	resistor	R84
75	1	R1206-F-2K22	2K22	118	i	resistor	R81
76	11	R1206-F-2K22	2K22	11%	i i	resistor	R82
77	1	R1206-F-2K22	2K22	118	i	resistor	R47 COD
78	1	R1206-F-2K22	2K22	118		resistor	R43 COD
79	1	R1206-F-2K22	2K22	11%	1	resistor	R18 COD
80	11	R1206-F-2K22	2K22	118	i i	resistor	R48 COD
81	1	R1206-F-2K22	2K22	118		resistor	R32 COD
82	1	R1206-F-2K22	2K22	118	i	resistor	R16 COD
	•	-					

de 刘							
INTERN	ATTONAL D	**					
BROW 83		R1206-F-2K22	2K22	11%		Incriation	
84	1 1	R1206-F-5K23	5K23	118		resistor resistor	R17 COD R25 COD
85	11	R1206-F-5K23	5K23	11%	i	Iresistor	R27 COD
86	11	R1206-F-5K23	5K23	118	i	resistor	R26 COD
87	11	R1206-F-5K62	562	1%	i	resistor	R87 COD
88	1	R1206-F-8K45	8K45	1%	I	resistor	R22 COD
89	1	R1206-F-8K45	8K45	18	I	resistor	R24 COD
90	1	R1206-F-8K45	8K45	11%	1	resistor	R23 COD
91 00	1	R1206-F-10K5 R1206-F-10K5	10K5 10K5	18	!	resistor	R21 COD R19 COD
92 93	1 1	R1206-F-10K5	10K5	1% 1%	1	resistor resistor	R19 COD
94	11	R1206-F-10K7	10007	11%	i	resistor	R45 COD
95	11	R1206-F-10K7	10K7	1%	i	resistor	R33 COD
96	1	R1206-F-10K7	10K7	1%	I	resistor	R42 COD
97	1	R1206-F-22K1	22K1	1%	I	resistor	R80
98	1	R1206-F-22K1	22K1	1%	I	resistor	R79
99 100	1	R1206-J-1K0	1K0	15%	!	resistor	R56
100	1	R1206-J-1K0	1K0	15%	1	resistor	R57
101 102	1 1	R1206-J-1K0 R1206-J-1K0	1K0 1K0	5% 5%		resistor resistor	R55 R58
103	11	R1206-J-1K0	11K0	15%	1	resistor	R54
104	1	R1206-J-1K0	11K0	15%	i	resistor	[R53]
105	1	R1206-J-1K0	1K0	5%	I	resistor	R51
106	1	R1206-J-1K0	1K0	5%	I	resistor	R52
107	1	R1206-J-1K0	1K0	15%	1	resistor	R76 COD
108	1	R1206-J-1K0	1K0	15%	!	resistor	R77 COD
109 110	1 1	R1206-J-1K2 R1206-J-4K7	1K2 4K7	5% 5%		resistor resistor	R70 R62
111	11	R1206-J-4K7	4K7	15%	1	resistor	R61
112	11	R1206-J-5K6	120	15%	ł	resistor	R78
113	1	R1206-J-10K	10K	15%	i	resistor	R4
114	1	R1206-J-10K	10K	5%	i i	resistor	R5
115	1	R1206-J-10K	10K	5%	I	resistor	R3
116	1	R1206-J-10K	10K	5%	I	resistor	R6
117	1	R1206-J-10K	10K	15%	1	resistor	R15
118 119	1 1	R1206-J-10K R1206-J-10K	10K 10K	5% 5%		resistor resistor	R7 R8
120	11	R1206-J-10K	22K	15%	i	resistor	[R9]
121	11	R1206-J-10K	10K	15%	i	resistor	[R10]
122	1	R1206-J-10K	22K	15%	i	resistor	R11
123	1	R1206-J-10K	22K	5%	I	resistor	R12
124	1	R1206-J-10K	22K	5%	I	resistor	R13
125	1	R1206-J-10K	22K	15%	!	resistor	R14
126 127	1 1	R1206-J-11K R1206-J-11K	11K	5% 5%		resistor	R72
127	11	R1206-J-22K	11K 22K	15%	1	resistor resistor	R73 R75
129	11	R1206-J-22K	22K	15%	i	resistor	R74
130	1	R1206-J-47R	47R	15%	i	resistor	R60
131	1	R1206-J-47R	47R	5%	I	resistor	R59
132	1	R1206-J-100K	100K	5%	I	resistor	R71
133	1	R1206-J-120R	120R	15%	1	resistor	R64
134	11	R1206-J-120R	120R	15%	!	resistor	R67
135 136	1 1	R1206-J-120R R1206-J-120R	120R 120R	5% 5%		resistor resistor	R65 R69
130	11	R1206-J-120R	120R	15%	ł	resistor	R63
138	1	R1206-J-120R	120R	15%	i	resistor	R66
139	1	R1206-J-120R	120R	15%	i	resistor	R68
140	1	R1206-J-680R	680R	5%	I	resistor	R1
141	1	R1206-J-680R	680R	5%	1	resistor	R2
142	1	TAJ_10u-25V	10u	120%	25V		C17
143 144	1 1	TAJ_10u-25V TAJ 10u-25V	10u 10u	20% 20%	25V 25V	1	C10 C18
144	11	TAJ_10u-25V	10u	20% 20%	25V 25V		C11
146	11	TAJ 10u-25V	10u	20%	25V	1	C12
147	11	TAJ_10u-25V	10u	20%	25V	1	C13
148	11	TAJ_10u-25V	10u	20%	25V	l I	[C14]
149	1	TAJ_10u-25V	10u	20%	25V	I	C15
150	11	TAJ_10u-25V	10u	20%	25V		[C16]
151	1	TAJ_10u-25V	10u	20%	25V		C9
152 153	1 1	TL072D TL072D				Opamp 5-pin Opamp 5-pin	U1 U2
154	11	TL072D	1	1	ł	Opamp 5-pin	U18
155	11	TL072D	i	i	i	Opamp 5-pin	1031
156	11	TL072D	i	i	i	Opamp 5-pin	1061
157	1	TL072D	I	I.	I	Opamp 5-pin	ן 70 ן
158	1	TL072D	1	1	1	Opamp 5-pin	1051
159	11	TL072D	!	1	1	Opamp 5-pin	U4
160 161	1 1	TL072D				Opamp 5-pin	U8 119
161 162	1 1	TL072D TL072D	1	1		Opamp 5-pin Opamp 5-pin	U9 U10
162	11	TL072D ZMM5V6	1			zener diode	DZ1
164	11	Z2 P100	i	1	1		Z1
165	11	Z2_P100	i	i	i	I	27
166	1	Z2_P100	I	I.	I	1	22
167	1	Z2_P100	1	1	1	1	26
168	11	Z2_P100	!	1	1		25
169 170	1 1	Z2_P100 Z2_P100				1	Z4 Z3
171	11	Z2_P100 Z2_P100	1	1	1	1	23 28
172		c1206-100n	100n	, 10%	25V	 capacitor	CF9A
							-

Pag. 72

TX50S manual
ć	ē						
DD/04	DEASTR	NG DIVISION					
173	11	c1206-100n	100n	10%	25V	capacitor	CF11A
174	11	c1206-100n	100n	110%	25V	capacitor	CF13A
175	11	c1206-100n	100n	110%	25V	capacitor	CF15A
176	11	c1206-100n	100n	10%	25V	capacitor	CF8A
177	11	c1206-100n	100n	10%	25V	capacitor	CF10A
178	11	c1206-100n	100n	10%	25V	capacitor	CF12A
179	1	c1206-100n	100n	10%	25V	capacitor	[CF14A]
180	1	c1206-100n	100n	10%	25V	capacitor	[CF16A]
181	1	c1206-100n	100n	10%	25V	capacitor	[CF17A]
182	1	c1206-100n	100n	10%	25V	capacitor	CF8B
183	1	c1206-100n	100n	10%	25V	capacitor	CF9B
184	1	c1206-100n	100n	10%	25V	capacitor	[CF10B]
185	1	c1206-100n	100n	10%	25V	capacitor	CF11B
186	1	c1206-100n	100n	10%	25V	capacitor	[CF12B]
187	1	c1206-100n	100n	10%	25V	capacitor	CF13B
188	1	c1206-100n	100n	10%	25V	capacitor	CF14B
189	1	c1206-100n	100n	10%	25V	capacitor	CF15B
190	1	c1206-100n	100n	10%	25V	capacitor	[CF16B]
191	1	c1206-100n	100n	10%	25V	capacitor	CF2A
192	1	c1206-100n	100n	10%	25V	capacitor	CF18A
193	1	c1206-100n	100n	10%	25V	capacitor	CF1A
194	1	c1206-100n	100n	10%	25V	capacitor	CF3A
195	1	c1206-100n	100n	10%	25V	capacitor	CF7B
196	1	c1206-100n	100n	10%	25V	capacitor	CF6B
197	1	c1206-100n	100n	10%	25V	capacitor	CF5B
198	1	c1206-100n	100n	10%	25V	capacitor	CF4B
199	1	c1206-100n	100n	10%	25V	capacitor	[CF6A]
200	1	c1206-100n	100n	10%	25V	capacitor	CF4A
201	1	c1206-100n	100n	10%	25V	capacitor	CF7A
202	1	c1206-100n	100n	10%	25V	capacitor	CF5A
203	1	c1206-100n	100n	110%	25V	capacitor	CF1B
204	1	c1206-100n	100n	10%	25V	capacitor	[CF2B]
205	11	c1206-100n	100n	110%	25V	capacitor	CF3B
206	1	c1206-100n	100n	10%	25V	capacitor	CF18B
207	1	c1206-220p	220p	110%	100V	capacitor	[C25]
208	11	c1206-220p	220p	110%	100V	capacitor	[C23]
209	11	c1206-220p	220p	110%	100V	capacitor	[C26]
210	1	c1206-220p	220p	110%	100V	capacitor	C24
211	11	c1206-270p	270p	10%	100V	capacitor	C22
212	1	c1206-270p	270p	10%	100V	capacitor	C21

DLCD BOARD - DISPLAY DRIVER

DLCD BOARD- DISPLAY DRIVER

Pag. 75

DLCD BOARD - DISPLAY DRIVER

item	laty	part number	Val	Tol	Work Volt	description	
1	1909 1	AM29F010N	vai				U2
2	11	BAR10	i	i	1	diode	[D6]
3	1	BAY21	i	i	i	diode	D4
4	11	BAY21	i	i.	i	diode	[D5]
5	1	BC183	1	1	1	Transistor, NPN BJT	Q5
6	1	BC183	I	1	1	Transistor, NPN BJT	Q6
7	1	BC183	I	1	1	Transistor, NPN BJT	Q4
8	1	BERG100M1X02V	I	1	1	I	J3
9	1	CCM_1n	1n	5%	100V	capacitor	C40 COD
10	11	CCM_1u	1u	20%	1	capacitor	C15COD
11	11	CCM_2u2	2u2	120%	1	capacitor	C1 COD
12	11	CCM_2u2	2u2	120%		capacitor	C12 COD
13	1	CCM_2u2	2u2	120%		capacitor	C13 COD
14 15	1 1	CCM_2u2 CCM_2u2	2u2 2u2	20% 20%		capacitor capacitor	C14 COD C20 COD
16	11	CCM 2u2	2u2	120%	1	capacitor	CF1 COD
17	11	CCM 2u2	2u2	120%	i	capacitor	C31 COD
18	11	CCM 2u2	2u2	20%	i	capacitor	C32 COD
19	11	CCM 2u2	2u2	120%	i	capacitor	[C33]COD
20	11	CCM 2u2	2u2	20%	i	capacitor	C37 COD
21	1	CCM 2u2	2u2	20%	1	capacitor	C38 COD
22	1	CCM_2u2	2u2	20%	1	capacitor	C39 COD
23	1	CCM_2u2	2u2	20%	1	capacitor	C27 COD
24	1	CCM_2u2	2u2	20%	1	capacitor	C14A COD
25	1	CCM_2u2	2u2	20%	T	capacitor	C32A COD
26	1	CCM_2u2	2u2	20%	1	capacitor	C32C COD
27	1	CCM_2u2	2u2	20%	I	capacitor	C32B COD
28	1	CCM_10n	10n	10%	I	capacitor	C2 COD
29	1	CCM_10n	10n	10%	I	capacitor	C3 COD
30	11	CCM_10n	10n	110%	1	capacitor	C4 COD
31	1	CCM_10n	10n	110%		capacitor	C5 COD
32 33	1 1	CCM_10n CCM_10n	10n 10n	10% 10%		capacitor capacitor	C6 COD C7 COD
34	11	CCM 10n	10n	10%	1	capacitor	
35	11	CCM 10n	10n	10%	1	capacitor	
36	11	CCM 27p	27p	15%		capacitor	C10 COD
37	11	CCM 27p	27p	15%	i	capacitor	[C11]COD
38	11	CCM 100n	100n	10%	i	capacitor	C16 COD
39	11	CCM 100n	100n	10%	i	capacitor	C17 COD
40	11	CCM 100n	100n	10%	i	capacitor	C18 COD
41	11	CCM_100n	100n	10%	i	capacitor	CF3 COD
42	1	CCM_100n	100n	10%	I	capacitor	CF4 COD
43	1	CCM_100n	100n	10%	1	capacitor	C22 COD
44	1	CCM_100n	100n	10%	T	capacitor	C23 COD
45	1	CCM_100n	100n	10%	1	capacitor	C24 COD
46	1	CCM_100n	100n	10%	I	capacitor	C26 COD
47	11	CCM_100n	100n	110%	1	capacitor	C25 COD
48	1	CCM_100n	100n	110%		capacitor	CF19 COD
49 50	1 1	CCM_100n	100n	10%		capacitor	CF21 COD
50 51	11	CCM_100n CCM_100n	100n 100n	10% 10%	1	capacitor capacitor	C28 COD
52	11	CCM 100n	100n	10%	1	capacitor	CF5 C
53	11	CCM 100n	100n	110%	1	capacitor	CF6 COD
54	11	CCM 100n	100n	110%	1	capacitor	CF8 COD
55	11	CCM 100n	100n	10%	i	capacitor	CF9 COD
56	1	CCM 100n	100n	10%	i	capacitor	CF22 COD
57	11	CCM_100n	100n	10%	i	capacitor	C34 COD
58	1	CCM_100n	100n	10%	I	capacitor	C35 COD
59	1	CCM_100n	100n	10%	1	capacitor	C36 COD
60	1	CCM_100n	100n	10%	I.	capacitor	CF20 COD
61	1	CCM_100n	100n	10%	1	capacitor	CF10 COD
62	1	CEH_220u-16V	220uF	20%	16V	I	C41 COD
63	1	CEV_10u-25	uF	20%	V V	I	C19
64	1	CEV_10u-25	10u	20%	25 v	1	[C21]
65	1	CEV_10u-25	10u	120%	25V	1	C29
66	1	CEV_10u-25	10u	20%	25V		[C30]
67	11	DS1302N	1	1		Real Time Clock	021
68 60	11	JFL_26M	1	1		Connector Flat 26 pins	J1
69 70	11	JFL_26M		1	1	Connector Flat 26 pins	J2
70 71	1 1	KEYBELCA1 LF353N				 Opamp 5-pin	U24 U7
72	11	LF353N	1	:	1	Opamp 5-pin	U11
73	11	LF353N	1		1	Opamp 5-pin	U13
74	11	LM336 5V	5V	i	1	Voltage Reference, ADJ.	10171
75	11	LM358N		1	1	Opamp 5-pin	U16
76	1	LM7805	i	1		Voltage Regulator, FIXED	10231
77	1	L025_22u	I	i	i	inductor	[L1]
78	1	MAX232N	I	i	i	Driver-Receiver RS232	U18
79	1	MC68HC11K1	I	I	I	1	01

	- 18	<i>200</i> 0					
C	e	×2					Т
BROAK 80	CASTING	DIVISION IMC34064	I	I	I	I	10221
81 82	1 1	M40247JY NE5532N	1	1	1	 Opamp 5-pin	LCD1 U12
83	11	NE5532N	i	i	l I	Opamp 5-pin	U14
84 85	1 1	NE5532N PBATT D16	1	1	1	Opamp 5-pin	U15 BT1
86	11	REEDIA_12V	1	 	1 	Battery BOBINA RELE	RL2
87	1	REEDIA 12V	1	I	I	RELAIS SPDT	RL2
88 89	1 1	REED1A_12V REED1A_12V	1	1	 	RELAIS SPDT BOBINA RELE	RL1 RL1
90	11	RSIP8C_10K	10K	, 5%	i	i	RR1 COD
91 92	1 1	R025-J-1K0 R025-J-1K0	1K0 1K0	5% 5%	 	resistor resistor	R46 COD R47 COD
93	11	R025-J-1K0	1K0	5%	' 	resistor	R49 COD
94	1	R025-J-1K8	1K8	-	l	resistor	R54 COD
95 96	1 1	R025-J-1K8 R025-J-1R8	1K8 1R8	5% 5%	 	resistor resistor	R45 COD R55
97	1	R025-J-2M2	2M2	5%	i	resistor	R21 COD
98 99	1 1	R025-J-3K3 R025-J-4K7	3K3 4K7	5% 5%	 	resistor resistor	R50 COD R2 COD
100	11	R025-J-4K7	4K7		' 	resistor	R3 COD
101	1	R025-J-4K7	4K7	-	l	resistor	R33 COD
102 103	1 1	R025-J-5K6 R025-J-5K6	5K6 5K6	-	 	resistor resistor	R34 COD R35 COD
104	1	R025-J-10K	10K		i	resistor	R6 COD
105 106	1 1	R025-J-10K R025-J-10K	10K 10K	-	 	resistor	R8 COD R10 COD
100	11	R025-J-10K	110K		1	resistor resistor	R10 COD
108	11	R025-J-10K	10K	•	I	resistor	R14 COD
109 110	1 1	R025-J-10K R025-J-10K	10K 10K		 	resistor resistor	R16 COD R18 COD
111	11	R025-J-10K	110K		I	resistor	R20 C
112	1	R025-J-10K	10K	•	l	resistor	R29 COD
113 114	1 1	R025-J-10K R025-J-10K	10K 10K	5% 5%	1	resistor resistor	R56 COD R64 COD
115	11	R025-J-10M	10M		I	resistor	R65 COD
116	1	R025-J-12K	12K	15%	1	resistor	R31 COD
117 118	1 1	R025-J-12K R025-J-18K	12K 18K		 	resistor resistor	R38 COD R1 COD
119	11	R025-J-18K	18K	•	I	resistor	R22 COD
120 121	1 1	R025-J-18K R025-J-33K	18K 33K		 	resistor resistor	R63 COD R32 COD
122	11	R025-J-33K	33K		1	resistor	R40 COD
123	1	R025-J-33K	33K		l	resistor	R41 COD
124 125	1 1	R025-J-47K R025-J-47K	47K 47K		 	resistor resistor	R42 COD R44 COD
126	1	R025-J-56K	56K	5%	I	resistor	R43 COD
127 128	1 1	R025-J-68K R025-J-68K	68K 68K	5% 5%		resistor	R28 COD R30 COD
120	11	R025-J-68K	68K	5%	1	resistor resistor	R37 COD
130	1	R025-J-68K	68K	5%	I	resistor	R39 COD
131 132	1 1	R025-J-82R R025-J-100K	82R 100K	•	 	resistor resistor	R4 COD R53 COD
133	11	R025-J-100R	1100		I	resistor	R5 COD
134	1	R025-J-100R	1100		1	resistor	R7 COD
135 136	1 1	R025-J-100R R025-J-100R	100 100		 	resistor resistor	R9 COD R11 COD
137	1	R025-J-100R	100	15%	Ì	resistor	R13 COD
138 139	1 1	R025-J-100R R025-J-100R	100 100	-	 	resistor resistor	R15 COD R17 COD
140	11	R025-J-100R	1100		' 	resistor	R19 COD
141	1	R025-J-150K	150K	-	l	resistor	R23 COD
142 143	1 1	R025-J-150K R025-J-150K	150K 150K	-	 	resistor resistor	R25 COD R26 COD
144	11	R025-J-150K	150K	15%	I	resistor	R27 COD
145 146	1 1	R025-J-150K R025-J-150K	150K 150K	-	 	resistor resistor	R58 COD
146	11	R025-J-150K	150K 150K		 	resistor resistor	R60 C R61 COD
148	1	R025-J-220R	220R	15%	Ì	resistor	R51 COD
149 150	1 1	R025-J-220R R025-J-330R	220R 330R	-	 	resistor resistor	R52 COD R59 COD
151	1	R025-J-390K	390K		 	resistor	R62 COD
152	1	R025-J-560R	560R	-	l	resistor	R24 COD
153 154	1 1	R025-J-560R R025-J-680R	560R 680R	-	 	resistor resistor	R57 COD R48 COD
155	1	R025-J-820R	820R		i	resistor	R36 COD
156 157	1 1	SN75176N SP TM114	1	-	1	Driver-Receiver R85	U19
157		VP0610L	 	-	 	 Mosfet, N-chan Power	₽9 Q2
159	1	VP0610L	Ì	-	l	Mosfet, N-chan Power	Q3
160 161	1 1	VP0610L XT-HC49U	 MHz		 	Mosfet, N-chan Power Crystal	Q1 XT1
162	11	XT-TC38		•	I	Crystal TC38	XT2
163	1	ZPD5V6	1		l	zener diode	DZ2
164 165	1 1	ZPD5V6 ZPD5V6		•	 	zener diode zener diode	DZ3 DZ4
166	1	ZPD5V6	I		l	zener diode	DZ5
167 168	1 1	ZPD5V6	1	-	1	zener diode	DZ6
168 169	1 1	ZPD5V6 ZPD5V6			 	zener diode zener diode	DZ7 DZ8

Pag. 77

TX50S manual BROADCASTING DIVISION 170 |1 |ZPD5V6 |zener diode |DZ1| I I 171 |1 Z3_P100 |**Z**1| T 171 172 173 174 175 176 177 |23_P100 |23_P100 |1N4148 |1N4148 |1N4148 |1 |1 |1 |1 |1 |Z2| T 1 diode |D1| |diode |diode |D2| |D3| |diode |Gate, 2-Input NAND |Gate, 2-Input NAND |Mux, 8-Bit |Mux, 8-Bit |Shift Register, 8-Bit |Transceiver, 0ctal 3-State |Transceiver, 0ctal 3-State |Latch, 0ctal D-Type 3-S |Latch, 0ctal D-Type 3-S Т I |74HC00N |74HC00N |U10| Т 1 [U20] 1 178 74HC151N |1 |U9| I 178 |1 179 |1 180 |1 181 |1 182 |1 |74HC151N |74HC164N |74HC245N |U25| |U8| Т 1 1051 Т I Т 74HC245N 1061 T T T 183 184 |1 |1 |74HC533N |74HC533N |U3| |U4| T I

MBA BOARD - MOTHER BOARD

MBA BOARD - MOTHER BOARD

MBA BOARD - MOTHER BOARD

item item item Number Number Number i i istato i istato istato i i istato istato istato istato i istato istato istato istato istato ista								
2 1 Instantion 1 Interpretation 100 4 1 Instantion 1 Interpretation 100 4 1 Instantion 1 Interpretation 100 5 1 Instantion 1 Interpretation 100 7 1 Instantion 1 Instantion 100 1 Instantion 1 Instantion 100 100 1 Instantion 1 1 100 1 100 1 Instantion 1 1 100 1 100 1 Instantion 1 1 100 100 100 1 Instantion 1 100 100 100 100 1 Instantion 100 100 100 100 100 1 Instantion 100 100 100 100 100 100 1 1000000000000000000000000000000000000	item	lqty	part number	Val	Tol	Work.Volt.	description	
3 1 NAR0 1 <th1< th=""> 1 1 1</th1<>	1	1	BAR10	I	1	1	diode	[D5]
4 1 MARD 1 1 Idods D3 6 1 MARDA 1 1 Idods D3 6 1 MARDA 1 1 Idods D3 7 1 MARDA 1 1 MARDA D4 9 1 MARDA 1 1 MARDA D3 10 MARDA 1 1 1 MARDA D3 11 MARDA 1 1 1 MARDA D3 11 MARDA 1 1 1 MARDA D3 12 MARDA 1 1 1 1 MARDA D3 13 MARDA 1	2	1	BAR10	1	1	I.	diode	D2
5 1 MAZ1 1	3	11	BAR10	i i	i.	i i	diode	[D4]
6 1 MAC21 1 <th1< th=""> 1 1 1</th1<>	4	11	BAR10	i	i	i	diode	[D3]
7 1 HELBS 1 IPARESIGNED [1] 9 13 HERGIONELLOS 1 1 HERGIONELLOS [3] 9 13 HERGIONELLOS 1 1 HERGIONELLOS [3] 13 HERGIONELLOS 1 1 1 HERGIONELLOS 1 1 1 13 HERGIONELLOS 1 1 1 1 1 1 1 14 13 100 1 <td< td=""><td>5</td><td> 1</td><td>BAY21</td><td>1</td><td>1</td><td>1</td><td>diode</td><td>[D6]</td></td<>	5	1	BAY21	1	1	1	diode	[D6]
9 1 INSERCIONALIZY 1 IP Physical Connector 1941 10 11 INSERCIONALIZY 1 1 131 11 INSERCIONALIZY 1 1 131 11 INSERCIONALIZY 1 1 131 13 1 INSERCIONALIZY 1 1 132 13 1 INSERCIONALIZY 1 1 133 13 1 INSERCIONALIZY 1 1 133 13 1 INSERCIONALIZY 1 1 133 14 1 1 1 1 133 133 13 1 1 1 134	6	11	BAY21	i i	i.	i i	diode	[D7]
9 1 HERGLONDURDY 1 1 Projectal Connector 131 11 11 HERGLONDURDY 1 1 137 11 11 HERGLONDURDY 1 1 137 11 11 HERGLONDURDY 1 1 137 11 11 120 120 1 137 13 13 HERGLONDURDY 1 1 137 14 14 100 130 138 1307 138 14 13 130 130 130 1308 1308 15 14 130 132 132 1308 1308 14 14 130 14 132 14 1308 14 1308 14 15 14 1308 14 1308 14 1308 14 1308 15 14 1306 1408 140 1308 14 1308 14	7	11	BC183	i	i	i	Transistor, NPN BJT	Q1
9 1 HERCLOULSDY 1 1 Physical Connector 131 11 11 HERCLOULSDY 1 1 131 133 12 11 HERCLOULSDY 1 1 131 133 12 12 HERCLOULSDY 1 1 131 133 13 12 12 120 1 120 133 133 14 13	8	11	BERG100M1X02V	i i	i.	i i	Physical Connector	
11 ImpercionActive Image: ImpercionActive Image: ImpercionActive Image: ImpercionActive 13 ImpercionActive Image: ImpercionActive Image: ImpercionActive Image: ImpercionActive 14 ImpercionActive Image: ImpercionActive Image: ImpercianActive Image: ImpercianActive 14 ImpercianActive Image: ImpercianActive Image: ImpercianActive Image: ImpercianActive 15 Image: ImmercianActive Image: ImmercianActive Image: ImmercianActive Image: ImmercianActive 16 Image: ImmercianActive Image: ImmercianActive Image: ImmercianActive Image: ImmercianActive 17 ImmercianActive Image: ImmercianActive Image: ImmercianActive Image: ImmercianActive Image: ImmercianActive 18 ImmercianActive Image: ImmercianActive Imagee: ImmercianActive Imagee: ImmercianActive Image: ImmercianActive Image: ImmercianActive 11 ImmercianActive Image: ImmercianActive Image: ImmercianActive Image: ImmercianActive Image: ImmercianActive 11 ImmercianActive ImmercianActive ImmercianActive <tdi< td=""><td>9</td><td>1</td><td>BERG100M1X03V</td><td>i</td><td>i</td><td>i</td><td></td><td></td></tdi<>	9	1	BERG100M1X03V	i	i	i		
12 1 Impact 000000000000000000000000000000000000	10	11	BERG100M1X08V	i i	i.	i i	1	[J9]
11 1	11	1	BERG100M1X08V	i	i	i	1	J10
11 1	12	11	BERG100M1X12V	i	i	i	1	
14 1 1004 1009 100900 10090 10090 </td <td></td> <td>•</td> <td>•</td> <td></td> <td></td> <td>•</td> <td></td> <td></td>		•	•			•		
11 100		•	•		•		capacitor	
16 1 100K Jule 1242 1204 1 100K Jule 100K		•	_	-		•		
11 1000 222 2209 1 compactor [C46] 19 11 1002 222 1222 1204 1 compactor [C46] 19 11 1002 222 1222 1204 1 compactor [C46] 11 1002 222 1204 1 compactor [C46] 11 1002 222 1204 1 compactor [C41] 11 1002 222 1204 1 compactor [C23] 12 11 1002 66p 15% 1 compactor [C53] 24 11 1002 1000		•		•	•	•	· •	
18 11 105% 22.2 12.0 1 respective [C46] 10 11 [C55] 22.2 [22.4] [20.6] 1 [capacitor [C43] 20 11 [C55] 22.2 [20.6] 1 [capacitor [C43] 21 11 [C55] 22.2 [20.6] 1 [capacitor [C43] 22 11 [C55] [22.6] 1 [capacitor [C53] 23 11 [C55] [666] [10.6] 1 [capacitor [C53] 24 11 [C55] [10.6] [10.6] [10.6] [10.6] [10.6] 27 11 [C55] [10.6] [10.6] [10.6] [10.6] [10.6] 28 11 [C55] [10.6] [10.6] [10.6] [10.6] [10.6] 29 11 [C55] [10.6] [10.6] [10.6] [10.6] [10.6] [10.6] [10.6] <t< td=""><td></td><td>•</td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>		•	-					
19 1 1000 201 10 1000 201 201 200 200		•	· _	•	•	•		
20 1 1 coff_al2 1/2		•	_	-			-	
21 1 1051_2.2. 12.2. 12.0.9. 1 1050_2.1.2. 12.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		•						
22 1 1 COT_102 202 204 1 respect tor [C23] 24 11 ICOT_605 1669 154 1 Icopacitor [C23] 24 11 ICOT_605 1600 1000 1004 Icopacitor [C23] 25 11 ICOT_605 1000 1006 Icopacitor [C55] 26 11 ICOT_1000 1000 1004 Icopacitor [C55] 27 11 ICOT_000 1000 1004 Icopacitor [C56] 21 ICOT_000 1000 1004 Icopacitor [C66] 21 ICOT_000 1000 1004 Icopacitor [C66] 21 ICOT_000 1000 1004 Icopacitor [C66] 31 ICOT_000 1000 1004 Icopacitor [C66] 36 I1 ICOT_000 1000 1004 Icopacitor [C67] 37 I ICOT_000 <td< td=""><td></td><td>•</td><td>· _</td><td>•</td><td>•</td><td>•</td><td></td><td></td></td<>		•	· _	•	•	•		
23 11 ICCM_68p 168p 198 1 Icapacitor [C24] 25 11 ICCM_100n 1100n 1004 I capacitor [C35] 26 11 ICCM_100n 1100n 1004 I capacitor [C35] 27 11 ICCM_100n 1100n 1004 I capacitor [C31] 28 11 ICCM_100n 1100n 1004 I capacitor [C34] 29 11 ICCM_100n 1100n 1004 I capacitor [C54] 31 11 ICCM_100n 1100n 1004 I capacitor [C66] 31 11 ICCM_100n 100n 1004 I capacitor [C66] 31 11 ICCM_100n 100n 1004 I capacitor [C66] 36 11 ICCM_100n 100n 1004 I capacitor [C66] 36 11 ICCM_100n 100n 1004 I capacitor [C66] <td< td=""><td></td><td>•</td><td>· _</td><td>-</td><td></td><td></td><td>-</td><td></td></td<>		•	· _	-			-	
24 11 ICCM_100n IJON IJON ICCM_100n IJON IJON ICCM_100n IJON ILON ICCM_100n		•	· _	•		•		
25 1 [CCG_100n] 100n "><td></td><td>•</td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>		•		-				
26 1 1COT_100n 1100n 1008 1 respect tor 1CS1 28 11 1COT_100n 1100n 1008 1 respect tor 1CS21 29 11 1COT_100n 1100n 1008 1 respect tor 1CS21 30 11 1COT_100n 1100n 1008 1 respect tor 1CS41 31 11 1COT_100n 1100n 1008 1 respect tor 1CS41 32 11 1COT_100n 1100n 1008 1 respect tor 1CS41 34 11 1COT_100n 1100n 1008 1 respect tor 1CS41 35 11 1COT_100n 1100n 1008 1 respect tor 1CS41 36 11 1COT_100n 1100n 1008 1 respect tor 1CS41 37 11 1COT_100n 1000 1008 1 respect tor 1CS41 38 <td></td> <td>•</td> <td></td> <td></td> <td>•</td> <td>•</td> <td></td> <td></td>		•			•	•		
27 1 ICOM_100n 100n ""><td></td><td>•</td><td></td><td>-</td><td></td><td></td><td>-</td><td></td></th<>		•		-			-	
28 1 [COM_100n] 100n "><td></td><td>•</td><td>· _</td><td></td><td></td><td></td><td></td><td></td></t<>		•	· _					
29 1 ICOM_100n 100n 100n ICOM_100n 100n< th=""> ICOM_100n <</thicom_100n<>		•	· _	•	•	•		
30 1 ICCM_100n 100n 100n ICOM_100n		•					-	
1 1 1COM_1000 1000		•	· _	•	•	•		
11 iCCM_100n 100n		•	_			•		
33 11 [CCM_100n 100n "><td></td><td>•</td><td></td><td>•</td><td></td><td>•</td><td></td><td></td></t<>		•		•		•		
14 1 ICCM_100n 100n ""><td></td><td>•</td><td></td><td></td><td></td><td>•</td><td>-</td><td></td></td<>		•				•	-	
35 11 (CCM_100n 100n 10% 1 (capacitor) (CC0) 37 11 (CCM_100n 100n 10% 1 (capacitor) (CC0) 37 11 (CCM_100n 100n 10% 1 (capacitor) (CC0) 38 11 (CCM_100n) 100n 10% 1 (capacitor) (CC6) 41 11 (CCM_100n) 100n 10% 1 (capacitor) (CC1) 42 11 (CCM_100n) 100n 10% 1 (capacitor) (CC1) 43 11 (CCM_150p) 150p 15% 1 (capacitor) (C1) 44 11 (CCM_150p) 150p 15% 1 (capacitor) (C2) 45 11 (CCM_150p) 150p 15% 1 (capacitor) (C2) 46 11 (CCM_150p) 150p 15% 1 (capacitor) (C2) 47		•				•		
36 11 1CX_100n 100n 100		•	· _	•	•	•		
37 11 ICX_100n 100n 10% I capacitor IC641 38 11 ICX_100n 100n 10% I capacitor IC651 39 11 ICX_100n 100n 10% I capacitor IC651 40 11 ICX_100n 100n 10% I capacitor IC611 41 I ICX_100n 1100n 10% I capacitor IC611 42 11 ICX_150p 150p 15% I capacitor IC171 44 11 ICX_150p 150p 15% I capacitor IC21 45 11 ICCM_150p 150p 15% I capacitor IC21 46 11 ICCM_150p 150p 15% I capacitor IC21 48 11 ICCM_150p 150p 15% I capacitor IC21 49 11 ICCM_170p 1470p 15% I capacitor IC21 51 ICCM_1		•				•	-	
11 1CX_100n 100n <		•	· _	•		•		
93 1 ICM_100n 100n 108 I capacitor ICG61 41 1 ICM_100n 100n 108 I capacitor ICG71 41 1 ICM_100n 1100n 108 I capacitor ICG73 42 11 ICM_150p 1150p 158 I capacitor IC171 44 11 ICCM_150p 1150p 158 I capacitor IC131 45 11 ICCM_150p 1150p 158 I capacitor IC211 46 11 ICCM_150p 1150p 158 I capacitor IC21 47 11 ICCM_170p 1470p 158 I capacitor IC21 48 11 ICCM_170p 1470p 158 I capacitor IC21 51 11 ICCM_170p 1470p 158 I capacitor IC21 52 11 ICM_10		•						
0 1 1 CCM_100n 100n 100s 1 capacitor (CF1) 41 11 1CCM_100n 100n 100s 1 capacitor (CF1) 42 11 1CCM_100n 1100n 100s 1 capacitor (C17) 43 11 1CCM_150p 1150p 15% 1 capacitor (C19) 44 11 1CCM_150p 1150p 15% 1 capacitor (C21) 45 11 1CCM_150p 1150p 15% 1 capacitor (C21) 47 11 1CCM_150p 1150p 15% 1 capacitor (C21) 48 11 1CCM_150p 1150p 15% 1 capacitor (C16) 51 11 ICCM_100-25V 100 120% 125V 1 (C11) 53 11 ICCM_100-25V 100 120% 125V 1 (C11) 54 11 <td< td=""><td></td><td>•</td><td></td><td>-</td><td></td><td>•</td><td></td><td></td></td<>		•		-		•		
11 1CDT_100n 100n 10% 1 capacitor [CE23]COD 42 11 1COT_100n 1100n 10% 1 capacitor [C17] 43 11 1COT_150p 1150p 15% 1 capacitor [C17] 44 11 1COT_150p 1150p 15% 1 capacitor [C17] 45 14 1COT_150p 1150p 15% 1 capacitor [C21] 46 11 (CCT_150p 1150p 15% 1 capacitor [C21] 47 14 (CCT_150p 1150p 15% 1 capacitor [C21] 48 11 (CCT_150p 1150p 15% 1 capacitor [C56] 50 11 (CCT_100_2V) 1470p 15% 1 capacitor [C57] 51 11 (CCT_100_2V) 1470p 15% 1 capacitor [C57] 53 12 (CCT_100_2V) 100 120% 125V 1 [C11] 54		•	· _	•		•		
1 $(CM_1 100n_1 10$		•						
43 11 100 150p 150p 158 1 capacitor 1017 44 11 100 150p 150p 158 1 capacitor 1018 45 11 100 150p 150p 158 1 capacitor 1020 46 11 100 150p 150p 158 1 capacitor 1020 47 11 100 150p 159 158 1 capacitor 1021 48 11 100 150p 158 1 capacitor 1021 49 11 100 150p 158 1 capacitor 1051 11 100 470p 158 1 capacitor 1051 11 100 470p 158 1 capacitor 1051 11 100 1208 1257 1 1021 103 120 1208 1257 1 1021 103 104 1208 1257 1 1021 55 11 1027.02-257 100 1208 1257 1		•	· _	•	•	•		
44 11 (CCM_150p 150p 150p 158 1 (Capacitor) (C19) 45 11 (CCM_150p 1150p 158 1 (Capacitor) (C20) 46 11 (CCM_150p 1150p 155 1 (Capacitor) (C21) 47 11 (CCM_150p 1150p 155 1 (Capacitor) (C15) 48 11 (CCM_150p 150p 155 1 (Capacitor) (C15) 50 11 (CCM_470p 1470p 155 1 (Capacitor) (C15) 51 11 (CCM_470p 1470p 158 1 (Capacitor) (C5) 52 11 (CCM_470p 1470p 158 1 (Capacitor) (C2) 53 11 (CEV_10u-25V 10u 1208 125V 1 (C10) 54 11 (CEV_10u-25V 10u 1208 125V 1 (C1) 55 11 (CEV_10u-25V 10u 1208 125V 1 (C1)		•	-				-	
45 11 ICCM_150p 1150p 15% Icapacitor IC18 46 11 ICCM_150p 1150p 15% Icapacitor IC20 47 11 ICCM_150p 1150p 15% Icapacitor IC21 48 11 ICCM_150p 1150p 15% Icapacitor IC21 48 11 ICCM_150p 1150p 15% Icapacitor IC21 50 11 ICCM_470p 1470p 15% Icapacitor IC51 51 11 ICCM_470p 1470p 15% Icapacitor IC51 53 11 ICCM_470p 1470p 15% Icapacitor IC51 54 11 ICCM_10-25V 10u 20% 125V Icapacitor IC10 55 11 ICCM_10-25V 10u 20% 125V IC21 IC21 56 11 ICCM_10-25V 10u 20% 125V IC21 IC21 57 11 ICCM_10-25V 10u 20% 125V IC21		•		-	•	•		
46 11 ICXI_150p 1150p 15% Icapacitor IC201 47 11 ICXI_150p 1150p 15% Icapacitor IC21 48 11 ICXI_150p 1150p 15% Icapacitor IC21 49 11 ICXI_150p 1150p 15% Icapacitor IC16 51 11 ICXI_470p 1470p 15% Icapacitor IC15 52 11 ICXI_470p 1470p 15% Icapacitor IC56 53 11 ICXI_470p 1470p 15% Icapacitor IC21 54 11 ICXI_10u-25V 10u 20% 125V IC10 IC21 55 11 ICXI_10u-25V 10u 20% 125V IC21 IC31 56 11 ICXI_10u-25V 10u 20% 125V IC31 IC31 58 11 ICXI_10u-25V 10u 20% 125V IC21 IC31 60 11 ICXI_10u-25V 10u 20% 125V IC21 </td <td></td> <td>•</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>		•		-				
47 11 (CCM_150p 150p 158 1 (capacitor) (C21) 48 11 (CCM_150p 150p 158 1 (capacitor) (C21) 49 11 (CCM_150p 150p 158 1 (capacitor) (C16) 50 11 (CCM_150p 1470p 15% 1 (capacitor) (C56) 52 11 (CCM_170p 1470p 15% 1 (capacitor) (C57) 53 11 (CEV_10u-25V) 10u 20% 25V 1 (C21) 54 11 (CEV_10u-25V) 10u 20% 25V 1 (C21) 55 11 (CEV_10u-25V) 10u 20% 25V 1 (C21) 56 11 (CEV_10u-25V) 10u 20% 25V 1 (C41) 59 11 (CEV_10u-25V) 10u 20% 25V 1 (C11) 60 11 (CEV_10u-25V) 10u 20% 25V 1 (C11) 61 1		•	-	-				
48 11 ICCM_150p 150p 15% I Icapacitor IC221 49 11 ICCM_150p 1150p 15% I Icapacitor IC151 51 11 ICCM_150p 1150p 15% I Icapacitor IC151 52 11 ICCM_170p 1470p 15% I Icapacitor IC571 53 11 ICEV_10u-25V 10u 120% 125V I IC11 54 11 ICEV_10u-25V 10u 120% 125V I IC10 55 11 ICEV_10u-25V 10u 120% 125V I IC11 55 11 ICEV_10u-25V 10u 120% 125V I IC11 56 11 ICEV_10u-25V 10u 120% 125V I IC11 57 11 ICEV_10u-25V 10u 120% 125V I IC11 58 11 ICEV_10u-25V 10u 120% 125V I IC11 60 11		•		-	•	•		
49 11 ICCM_150p 150p 15% Icapacitor IC161 50 11 ICCM_150p 150p 15% Icapacitor IC151 51 11 ICCM_470p 1470p 15% Icapacitor IC561 52 11 ICCM_470p 1470p 15% Icapacitor IC571 53 11 ICEV_10u-25V 10u 120% 125V Icapacitor IC21 54 11 ICEV_10u-25V 10u 120% 125V Icapacitor IC21 55 11 ICEV_10u-25V 10u 120% 125V Icapacitor IC21 56 11 ICEV_10u-25V 10u 120% 125V Icapacitor IC31 58 11 ICEV_10u-25V 10u 120% 125V Ic41 Ic51 60 11 ICEV_10u-25V 10u 120% 125V Ic11 Ic71 61 ICEV_10u-25V 10u 120% 125V Ic11 Ic71 Ic61 62 11 ICEV_10u-25V<		•		-				
50 1 $ CCM_1 50p$ $ 150p$ $ 5\%$ $ capacitor$ $ C15 $ 51 1 $ CCM_4 70p$ $ 470p$ $ 5\%$ $ capacitor$ $ C56 $ 53 1 $ CCM_4 70p$ $ 470p$ $ 5\%$ $ capacitor$ $ C57 $ 53 1 $ CEV_1 0u-25V$ $ 10u$ $ 20\%$ $ 25V$ $ C1 $ 54 1 $ CEV_1 0u-25V$ $ 10u$ $ 20\%$ $ 25V$ $ C2 $ 55 1 $ CEV_1 0u-25V$ $ 10u$ $ 20\%$ $ 25V$ $ C2 $ 56 1 $ CEV_1 0u-25V$ $ 10u$ $ 20\%$ $ 25V$ $ C1 $ $ C2 $ 57 1 $ CEV_1 0u-25V$ $ 10u$ $ 20\%$ $ 25V$ $ C1 $ $ C2 $ 58 1 $ CEV_1 0u-25V$ $ 10u $ $ 20\%$ $ 25V $ $ C1 $ $ C2 $ 60 1 $ CEV_1 0u-25V $ $ 10u $ $ 20\% $ $ 25V $ $ C1 $ $ C1 $ 61 $ CEV_1 0u-25V $ $ 10u $ $ 20\% $ $ 25V $ $ C1 $ $ C1 $		•			•	•		
51 11 $(CCM_{-}^{2}470_{p}^{o})$ $ 470_{p}^{o} $ 15% capacitor $ C56 $ 52 11 $(CCM_{-}^{4}70_{p})$ $ 470_{p}^{o} $ 15% capacitor $ C57 $ 53 11 $(CEV_{-}^{1}10u_{-25V})$ $ 10u $ $ 20% $ $ 25V $ $ C1 $ 54 11 $(CEV_{-}^{1}10u_{-25V})$ $ 10u $ $ 20% $ $ 25V $ $ C10 $ 55 11 $(CEV_{-}^{1}10u_{-25V})$ $ 10u $ $ 20% $ $ 25V $ $ C3 $ 57 11 $(CEV_{-}^{1}10u_{-25V})$ $ 10u $ $ 20% $ $ 25V $ C2 58 11 $(CEV_{-}^{1}10u_{-25V})$ $ 10u $ $ 20% $ $ 25V $ C2 60 11 $(CEV_{-}^{1}10u_{-25V})$ $ 10u $ $20% $ $ 25V $ C11 63 11 $(CEV_{-}^{1}10u_{-25V})$ $ 10u $ $20% $ $ 25V $ C11 64 11 $(CEV_{-}^{1}10u_{-25V})$ $ 10u $ $20% $ 25V C6 65 <td></td> <td>•</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td>		•		-	-		-	
52 11 $ CCM_{-}^{-}TO_{D}$ $ 470_{D}$ $ 5\%$ cspacitor $ C57 $ 53 11 $ CCW_{-}10u_{-}25v$ $ 10u$ $ 20\%$ $ 25v$ $ C1 $ 54 11 $ CEV_{-}10u_{-}25v$ $ 10u$ $ 20\%$ $ 25v$ $ C2 $ 55 11 $ CEV_{-}10u_{-}25v$ $ 10u$ $ 20\%$ $ 25v$ $ C3 $ 56 11 $ CEV_{-}10u_{-}25v$ $ 10u$ $ 20\%$ $ 25v$ $ C3 $ 58 11 $ CEV_{-}10u_{-}25v$ $ 10u$ $ 20\%$ $ 25v$ $ C1 $ 60 11 $ CEV_{-}10u_{-}25v$ $ 10u$ $ 20\%$ $ 25v$ $ C1 $ 61 $ CEV_{-}10u_{-}25v$ $ 10u$ $ 20\%$ $ 25v$ C1 63 11 $ CEV_{-}10u_{-}25v$ $ 10u$ $ 20\%$ $ 25v$ C1 64 11 $ CEV_{-}10u_{-}25v$ $ 10u$ $ 20\%$ $ 25v$ C1 65 11 $ CEV_{-}10u_{-}25v$ $ 10u $ <td></td> <td>•</td> <td></td> <td>-</td> <td></td> <td>•</td> <td></td> <td></td>		•		-		•		
53 1 $ CEV_1 0u-25V $ 10u $ 20\% $ $ 25V $ $ C1 $ 54 1 $ CEV_1 0u-25V $ 110u $ 20\% $ $ 25V $ $ C2 $ 55 1 $ CEV_1 0u-25V $ 110u $ 20\% $ $ 25V $ $ C1 $ 56 1 $ CEV_1 0u-25V $ 110u $ 20\% $ $ 25V $ $ C3 $ 57 1 $ CEV_1 0u-25V $ 110u $ 20\% $ $ 25V $ $ C4 $ 59 1 $ CEV_1 0u-25V $ 110u $ 20\% $ $ 25V $ $ C1 $ 60 11 $ CEV_1 0u-25V $ 110u $ 20\% $ $ 25V $ $ C1 $ 61 $ CEV_1 0u-25V $ 110u $ 20\% $ $ 25V $ $ C1 $ 62 1 $ CEV_1 0u-25V $ 110u $ 20\% $ $ 25V $ $ C1 $ 63 1 $ CEV_1 0u-25V $ 110u $ 20\% $ $ 25V $ $ C3 $ 64 1 $ CEV_1 0u-25V $ 10u $ 20\% $ $ 25V $ $ C3 $ 65 1 $ CEV_2 Cu-25V $ 10u $ 20\% $ $ C2 $ </td <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td>			-	-			-	
54 11 $ CEV_1Ou-2SV $ 10u 120% 125V 1 1C2 55 11 $ CEV_1Ou-2SV $ 10u 120% 125V 1 1C10 56 11 $ CEV_1Ou-2SV $ 10u 120% 125V 1 1C31 57 11 $ CEV_1Ou-2SV $ 110u 120% 125V 1 1C31 58 11 $ CEV_1Ou-2SV $ 110u 120% 125V 1 1C41 59 11 $ CEV_1Ou-2SV $ 110u 120% 125V 1 1C12 61 $ CEV_1Ou-2SV $ 110u 120% 125V 1 1C11 63 11 $ CEV_1Ou-2SV $ 110u 120% 125V 1 1C11 64 11 $ CEV_1Ou-2SV $ 110u 120% 125V 1 1C31 65 11 $ CEV_1Ou-2SV $ 101u 120% 125V 1 1C31 66 11 $ CEV_1Ou-2SV $ 101u 120% 125V 1 1C31 66 11 <td></td> <td>•</td> <td>-</td> <td>-</td> <td></td> <td>•</td> <td>capacitor</td> <td></td>		•	-	-		•	capacitor	
55 11 $(CEV_{-1}10u_{-2}5V)$ 110u 120% 125V 1 1C101 56 11 $(CEV_{-1}10u_{-2}5V)$ 110u 120% 125V 1 1C21 58 11 $(CEV_{-1}10u_{-2}5V)$ 110u 120% 125V 1 1C41 59 11 $(CEV_{-1}10u_{-2}5V)$ 110u 120% 125V 1 1C41 59 11 $(CEV_{-1}10u_{-2}5V)$ 110u 120% 125V 1 1C41 50 11 $(CEV_{-1}0u_{-2}5V)$ 110u 120% 125V 1 1C11 61 11 $(CEV_{-1}10u_{-2}5V)$ 110u 120% 125V 1 1C11 63 11 $(CEV_{-1}10u_{-2}5V)$ 110u 120% 125V 1 1C31 64 11 $(CEV_{-1}10u_{-2}5V)$ 110u 120% 125V 1 1C31 65 11 $(CEV_{-1}1u_{-2}5V)$ 110u 120% 125V 1 1C31 66 11 $(CEV_{-1}1u_{-2}5V)$ 110u 120% 16		•			•	•	1	
56 1 CEV_10u-25V 10u 20% 25V C3] 57 11 CEV_10u-25V 10u 20% 25V C4 58 11 CEV_10u-25V 10u 20% 25V C4 59 1 CEV_10u-25V 10u 20% 25V C1 61 1 CEV_10u-25V 10u 20% 25V C1 62 1 CEV_10u-25V 10u 20% 25V C1 63 1 CEV_10u-25V 10u 20% 25V C6 64 1 CEV_10u-25V 10u 20% 25V C3 65 1 CEV_10u-25V 10u 20% 25V C3 66 1 CEV_10u-25V 10u 20% 25V C3 67 1 CPVST_6n8_63V 6n8 10% 63V capacitor C28 68 1 <td></td> <td>•</td> <td></td> <td>-</td> <td>•</td> <td>•</td> <td>1</td> <td></td>		•		-	•	•	1	
57 1 $ CEV_{-1}^{-1}0u_{-2}5V$ 10u 20% 25V C4 58 1 $ CEV_{-1}0u_{-2}5V$ 10u 20% 25V C5 59 1 $ CEV_{-1}0u_{-2}5V$ 10u 20% 25V C2 61 1 $ CEV_{-1}0u_{-2}5V$ 10u 20% 25V C1 62 1 $ CEV_{-1}0u_{-2}5V$ 10u 20% 25V C1 63 1 $ CEV_{-1}0u_{-2}5V$ 10u 20% 25V C6 64 1 $ CEV_{-1}0u_{-2}5V$ 10u 20% 25V C3 65 1 $ CEV_{-1}0u_{-2}5V$ 10u 20% 25V C3 66 1 $ CEV_{-1}0u_{-2}5V$ 47u 20% 25V C3 67 1 $ CPVST_{-6n}63V$ 6n8 10% 63V capacitor C3 61 1 $ CPVST_{-6n}63V$ 6n8 10% 63V								
58 1 $ CEV_1^{-1}0u25V$ 10u 20% 25V C4 59 1 $ CEV_1^{-1}0u25V$ 10u 20% 25V C12 60 1 $ CEV_1^{-1}0u25V$ 10u 20% 25V C12 61 1 $ CEV_1^{-1}0u25V$ 10u 20% 25V C11 63 1 $ CEV_1^{-1}0u25V$ 10u 20% 25V C11 63 1 $ CEV_1^{-1}0u25V$ 10u 20% 25V C3] 64 1 $ CEV_1^{-1}0u25V$ 10u 20% 25V C3] 65 1 $ CEV_1^{-1}a_2^{-63V}$ 47u 20% 25V C7] C6 66 1 $ CEV_1^{-1}a_2^{-63V}$ 47u 20% 25V C3] C7] C6 C4 C7] C6 C4 C6 C4 C6 C4 C6 C6 C6 C6 C6 C6			-					
59 $ 1$ $ CEV_{1}0u-25V$ $ 10u$ $ 20\%$ $ 25V$ $ $ $ C5 $ 60 $ 1$ $ CEV_{1}10u-25V$ $ 10u$ $ 20\%$ $ 25V$ $ $ $ C12 $ 61 $ 1$ $ CEV_{1}0u-25V$ $ 10u$ $ 20\%$ $ 25V$ $ $ $ C11 $ 62 $ 1$ $ CEV_{1}0u-25V$ $ 10u$ $ 20\%$ $ 25V$ $ $ $ C11 $ 63 $ 1$ $ CEV_{1}0u-25V$ $ 10u$ $ 20\%$ $ 25V$ $ $ $ C6 $ 64 $ 1$ $ CEV_{1}0u-25V$ $ 10u$ $ 20\%$ $ 25V$ $ $ $ C3 $ 65 $ 1$ $ CEV_{1}0u-25V$ $ 10u$ $ 20\%$ $ 25V$ $ $ $ C3 $ 66 $ 1$ $ CEV_{3}Tac_{63V}$ $ 47u$ $ 20\%$ $ 25V$ $ $ $ C3 $ 67 $ 1$ $ CEVST_{10}ac_{53V}$ $ 47u$ $ 20\%$ $ 25V$ $ $ $ C3 $ 68 $ 1$ $ CEVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C3 $ 69 $ 1$ $ CEVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C3 $ 70 $ 1$ $ CEVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C3 $ 71 $ 1$ $ CEVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C3 $ 72 $ 1$ $ CEVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C3 $ 74 $ 1$ $ CEVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C3 $ 75							•	
60 1 $ CEV_1\bar{1}0u-25V$ 10u 20% 25V C12 61 1 $ CEV_1\bar{1}0u-25V$ 10u 20% 25V C7 62 1 $ CEV_1\bar{1}0u-25V$ 10u 20% 25V C11 63 1 $ CEV_1\bar{1}0u-25V$ 10u 20% 25V C13 64 1 $ CEV_1\bar{1}0u-25V$ 10u 20% 25V C13 65 1 $ CEV_1\bar{1}u-25V$ 10u 20% 25V C13 66 1 $ CEV_1\bar{1}u-25V$ 47u 20% 25V C26 68 1 $ CEVST_1n2_63V$ 1n2 10% 63V capacitor C28 66 1 $ CEVST_6n8_63V$ 6n8 10% 63V capacitor C31 70 1 $ CEVST_6n8_63V$ 6n8 10% 63V capacitor C32 71 1 $ CEVST_6n8_63V$ 6n8 10% 63V capacitor C36 73 1 $ CEVST_6n8_63V$ 6n8 10% 63V capacitor C33 74 1 $ CEVST_6n8_63V$ 6n8 10% 63V capacitor C34 75 1 $ CEVST_6n8_63V$ 6n8 10% 63V capacitor C34 77 1 $ CEVST_6n8_63V$ 6n8 10% 63V capacitor C34 77 1 $ CEVST_6n8_63V$ 6n8 10% 63V capacitor C34								
61 1 $ CEV_1^-10u-25V$ 10u 20% 25V C7 62 1 $ CEV_1^-10u-25V$ 10u 20% 25V C11 63 1 $ CEV_1^-10u-25V$ 10u 20% 25V C6 64 1 $ CEV_1^-10u-25V$ 10u 20% 25V C1] 65 1 $ CEV_1^-10u-25V$ 10u 20% 25V C6 66 1 $ CEV_1^-10u-25V$ 10u 20% 25V C7] 67 1 $ CEVS_1^-6a_0^-63V$ 47u 20% 25V C7] 68 1 $ CPVS_1^-6a_0^-63V$ 6a8 10% 63V capacitor C38 69 1 $ CPVS_0^-6a_0^-63V$ 6a8 10% 63V capacitor C32 71 1 $ CPVS_0^-6a_0^-63V$ 6a8 10% 63V capacitor C32 72 1 $ CPVS_0^-6a_0^-63V$ 6a8 10% 63V								
62 $ 1$ $ CEV_1^{-1}0u-25V$ $ 10u$ $ 20\%$ $ 25V$ $ $ $ C11 $ 63 $ 1$ $ CEV_1^{-1}0u-25V$ $ 10u$ $ 20\%$ $ 25V$ $ $ $ C6 $ 64 $ 1$ $ CEV_1^{-1}0u-25V$ $ 10u$ $ 20\%$ $ 25V$ $ $ $ C6 $ 66 $ 1$ $ CEV_1^{-1}0u-25V$ $ 10u$ $ 20\%$ $ 25V$ $ $ $ C6 $ 66 $ 1$ $ CEV_1^{-1}av-25V$ $ 10u$ $ 20\%$ $ 25V$ $ $ $ C73 COD$ 67 $ 1$ $ CFVST_1n_2^{-63V}$ $ 1n_2$ $ 10\%$ $ 63V$ $ capacitor$ $ C26 $ 68 $ 1$ $ CFVST_6n_8^{-63V}$ $ 6n_8$ $ 10\%$ $ 63V$ $ capacitor$ $ C42 $ 70 $ 1$ $ CFVST_6n_8^{-63V}$ $ 6n_8$ $ 10\%$ $ 63V$ $ capacitor$ $ C32 $ 71 $ 1$ $ CFVST_6n_8^{-63V}$ $ 6n_8$ $ 10\%$ $ 63V$ $ capacitor$ $ C30 $ 72 $ 1$ $ CFVST_6n_8^{-63V}$ $ 6n_8$ $ 10\%$ $ capacitor$ $ C$								
63 1 $(CEV_1 10u - 25V)$ 10u 20% 25V (C6) 64 1 $(CEV_1 10u - 25V)$ 10u 20% 25V (C13) 65 1 $(CEV_1 10u - 25V)$ 10u 20% 25V (C8) 66 1 $(CEV_1 47u - 25V)$ 47u 20% 25V (C73) (COD 67 1 $(CEVST_1 1n_2 63V)$ 1n2 10% 63V capacitor (C26) 68 1 $(CFVST_6n_8 63V)$ 6n8 10% 63V capacitor (C31) 70 1 $(CFVST_6n_8 63V)$ 6n8 10% 63V capacitor (C32) 71 1 $(CFVST_6n_8 63V)$ 6n8 10% 63V capacitor (C36) 72 1 $(CFVST_6n_8 63V)$ 6n8 10% 63V capacitor (C36) 73 1 $(CFVST_6n_8 63V)$ 6n8 10% 63V capacitor (C39) 74 1 $(CFVST_6n_8 63V)$ 6n8			-				•	
64 1 $ CEV_10u-25V$ 10u $ 20\%$ $ 25V$ $ C13 $ 65 1 $ CEV_10u-25V$ 10u $ 20\%$ $ 25V$ $ C8 $ 66 1 $ CEV_110u-25V$ 47u $ 20\%$ $ 25V$ $ C73 COD$ 67 1 $ CEV_3T_{12}63V$ $ 1n2$ $ 10\%$ $ 63V$ $ capacitor$ $ C26 $ 68 1 $ CFVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C31 $ 70 1 $ CFVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C32 $ 71 1 $ CFVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C32 $ 72 1 $ CFVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C33 $ 74 1 $ CFVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C33 $ 74 1 $ CFVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C33 $ 74 1 $ CFVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C39 $ 76 1 $ CFVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C31 $ 77 1 $ CFVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C34 $ 77 1 $ CFVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C35 $ 79 1 $ CFVST_{6n8}63V$ $ 6n8$ $ 10\%$ $ 63V$ $ cap$								
65 1 $ CEV_1^{-1}0u-25V$ 10u 20% $ 25V$ C8 66 1 $ CEV_4^{-1}u-25V$ 47u 20% $ 25V$ C73 COD67 1 $ CFVST_{1n}2_{-63V}$ 1n2 10% 63V capacitor C26 68 1 $ CFVST_{6n8}_{-63V}$ 6n8 10% 63V capacitor C31 70 1 $ CFVST_{6n8}_{-63V}$ 6n8 10% 63V capacitor C32 71 1 $ CFVST_{6n8}_{-63V}$ 6n8 10% 63V capacitor C32 72 1 $ CFVST_{6n8}_{-63V}$ 6n8 10% 63V capacitor C33 73 1 $ CFVST_{6n8}_{-63V}$ 6n8 10% 63V capacitor C33 74 1 $ CFVST_{6n8}_{-63V}$ 6n8 10% 63V capacitor C30 75 1 $ CFVST_{6n8}_{-63V}$ 6n8 10% 63V capacitor C34 76 1 $ CFVST_{6n8}_{-63V}$ 6n8 10% 63V capacitor C39 76 1 $ CFVST_{6n8}_{-63V}$ 6n8 10% 63V capacitor C35 79 1 $ CFVST_{6n8}_{-63V}$ 6n8 10% 63V capacitor C35 79 1 $ CFVST_{6n8}_{-63V}$ 6n8 10% 63V capacitor C35 79 1 $ CFVST_{6n8}_{-63V}$ 6n8 10% 63V capacitor C31 80 1 $ CFVST_{6n8}_{-63V}$ <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
66 $ 1$ $ CEV_47u-25V$ $ 47u$ $ 20\%$ $ 25V$ $ $ $ C73 COD$ 67 $ 1$ $ CFVST_{12}_{63}C3V$ $ In2$ $ 10\%$ $ 63V$ $ capacitor$ $ C26 $ 68 $ 1$ $ CFVST_{6n8}_{63}C3V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C31 $ 69 $ 1$ $ CFVST_{6n8}_{63}C3V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C42 $ 70 $ 1$ $ CFVST_{6n8}_{63}C3V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C42 $ 71 $ 1$ $ CFVST_{6n8}_{63}C3V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C32 $ 72 $ 1$ $ CFVST_{6n8}_{63}C3V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C30 $ 73 $ 1$ $ CFVST_{6n8}_{63}C3V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C30 $ 74 $ 1$ $ CFVST_{6n8}_{63}C3V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C30 $ 74 $ 1$ $ CFVST_{6n8}_{63}C3V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C30 $ 75 $ 1$ $ CFVST_{6n8}_{63}C3V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C32 $ 76 $ 1$ $ CFVST_{6n8}_{63}C3V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C35 $ 79 $ 1$ $ CFVST_{6n8}_{63}C3V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ $ C37 $ 80 $ 1$ $ CFVST_{6n8}_{63}C3V$ $ 6n8$ $ 10\%$ $ 63V$ $ capacitor$ <							•	
67 $ 1$ $ CFVST_{1n2}_{6.8}(3V)$ $ 1n2$ $ 10\%$ $ 63V$ $ capacitor$ $ C26 $ 68 $ 1$ $ CFVST_{6n8}_{6.6}(3V)$ $ 6n8$ $ 10\%$ $ 63V $ $ capacitor$ $ C38 $ 69 $ 1$ $ CFVST_{6n8}_{6.6}(3V)$ $ 6n8$ $ 10\% $ $ 63V $ $ capacitor$ $ C31 $ 70 $ 1$ $ CFVST_{6n8}_{6.6}(3V) $ $ 6n8 $ $ 10\% $ $ 63V $ $ capacitor $ $ C42 $ 71 $ 1$ $ CFVST_{6n8}_{6.6}(3V) $ $ 6n8 $ $ 10\% $ $ 63V $ $ capacitor $ $ C32 $ 72 $ 1 $ $ CFVST_{6n8}_{6.6}(3V) $ $ 6n8 $ $ 10\% $ $ 63V $ $ capacitor $ $ C33 $ 74 $ 1 $ $ CFVST_{6n8}_{6.6}(3V $ $ 6n8 $ $ 10\% $ $ 63V $ $ capacitor $ $ C40 $ 75 $ 1 $ $ CFVST_{6n8}_{6.6}(3V $ $ 6n8 $ $ 10\% $ $ 63V $ $ capacitor $ $ C29 $ 76 $ 1 $ $ CFVST_{6n8}_{6.6}(3V $ $ 6n8 $ $ 10\% $ $ 63V $ $ capacitor $ $ C29 $ 78 $ 1 $							•	
68 $ 1$ $ CPVST_{6n8}^{-}63V$ $ 6n8$ $ 10\$$ $ 63V$ $ capacitor$ $ C31 $ 69 $ 1$ $ CPVST_{6n8}^{-}63V$ $ 6n8$ $ 10\$$ $ 63V$ $ capacitor$ $ C31 $ 70 $ 1$ $ CPVST_{6n8}^{-}63V$ $ 6n8$ $ 10\$$ $ 63V$ $ capacitor$ $ C42 $ 71 $ 1$ $ CPVST_{6n8}^{-}63V$ $ 6n8$ $ 10\$$ $ 63V$ $ capacitor$ $ C32 $ 72 $ 1$ $ CPVST_{6n8}^{-}63V$ $ 6n8$ $ 10\$$ $ 63V$ $ capacitor$ $ C33 $ 74 $ 1$ $ CPVST_{6n8}^{-}63V$ $ 6n8$ $ 10\$$ $ 63V$ $ capacitor$ $ C33 $ 74 $ 1$ $ CPVST_{6n8}^{-}63V$ $ 6n8$ $ 10\$$ $ 63V$ $ capacitor$ $ C40 $ 75 $ 1$ $ CPVST_{6n8}^{-}63V$ $ 6n8$ $ 10\$$ $ 63V$ $ capacitor$ $ C29 $ 76 $ 1$ $ CPVST_{6n8}^{-}63V$ $ 6n8$ $ 10\$$ $ 63V$ $ capacitor$ $ C29 $ 78 $ 1$ $ CPVST_{6n8}^{-}63V$ $ 6n8$ <t< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td>•</td><td></td></t<>			_				•	
69 1 CFVST_6n8_63V 6n8 10% 63V capacitor C31 70 1 CFVST_6n8_63V 6n8 10% 63V capacitor C42 71 1 CFVST_6n8_63V 6n8 10% 63V capacitor C32 72 1 CFVST_6n8_63V 6n8 10% 63V capacitor C33 73 1 CFVST_6n8_63V 6n8 10% 63V capacitor C33 74 1 CFVST_6n8_63V 6n8 10% 63V capacitor C39 75 1 CFVST_6n8_63V 6n8 10% 63V capacitor C39 76 1 CFVST_6n8_63V 6n8 10% 63V capacitor C34 77 1 CFVST_6n8_63V 6n8 10% 63V capacitor C35 78 1 CFVST_6n8_63V 6n8 10% 63V capacitor C37 80 1 CFVST_6n8_63V 6n8 10% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
70 1 CPVST_6n8_63V 6n8 10% 63V capacitor C42 71 1 CPVST_6n8_63V 6n8 10% 63V capacitor C32 72 1 CPVST_6n8_63V 6n8 10% 63V capacitor C32 73 1 CPVST_6n8_63V 6n8 10% 63V capacitor C33 74 1 CPVST_6n8_63V 6n8 10% 63V capacitor C40 75 1 CPVST_6n8_63V 6n8 10% 63V capacitor C39 76 1 CPVST_6n8_63V 6n8 10% 63V capacitor C39 76 1 CPVST_6n8_63V 6n8 10% 63V capacitor C39 77 1 CPVST_6n8_63V 6n8 10% 63V capacitor C35 78 1 CPVST_6n8_63V 6n8 10% 63V capacitor C37 80 1 CPVST_6n8_63V 6n8 10%							-	
71 1 CFVST_6n8_63V 6n8 10% 63V capacitor C32 72 1 CFVST_6n8_63V 6n8 10% 63V capacitor C32 73 1 CFVST_6n8_63V 6n8 10% 63V capacitor C33 74 1 CFVST_6n8_63V 6n8 10% 63V capacitor C33 74 1 CFVST_6n8_63V 6n8 10% 63V capacitor C39 75 1 CFVST_6n8_63V 6n8 10% 63V capacitor C34 76 1 CFVST_6n8_63V 6n8 10% 63V capacitor C29 78 1 CFVST_6n8_63V 6n8 10% 63V capacitor C35 79 1 CFVST_6n8_63V 6n8 10% 63V capacitor C37 80 1 CFVST_6n8_63V 6n8 10% 63V capacitor C31 81 1 CFVST_6n8_63V 6n8 10%			·					
72 1 CPVST_6n8_63V 6n8 10% 63V capacitor C36 73 1 CPVST_6n8_63V 6n8 10% 63V capacitor C33 74 1 CPVST_6n8_63V 6n8 10% 63V capacitor C40 75 1 CPVST_6n8_63V 6n8 10% 63V capacitor C33 76 1 CPVST_6n8_63V 6n8 10% 63V capacitor C29 76 1 CPVST_6n8_63V 6n8 10% 63V capacitor C29 78 1 CPVST_6n8_63V 6n8 10% 63V capacitor C35 79 1 CPVST_6n8_63V 6n8 10% 63V capacitor C37 80 1 CPVST_6n8_63V 6n8 10% 63V capacitor C30 81 1 CPVST_6n8_63V 6n8 10% 63V capacitor C41 82 1 CPVST_6n8_63V 6n8 10%								
73 1 CFVST_6n8_63V 6n8 10% 63V capacitor C3] 74 1 CFVST_6n8_63V 6n8 10% 63V capacitor C40 75 1 CFVST_6n8_63V 6n8 10% 63V capacitor C33 76 1 CFVST_6n8_63V 6n8 10% 63V capacitor C34 77 1 CFVST_6n8_63V 6n8 10% 63V capacitor C29 78 1 CFVST_6n8_63V 6n8 10% 63V capacitor C35 79 1 CFVST_6n8_63V 6n8 10% 63V capacitor C37 80 1 CFVST_6n8_63V 6n8 10% 63V capacitor C37 81 1 CFVST_6n8_63V 6n8 10% 63V capacitor C30 81 1 CFVST_6n8_63V 6n8 10% 63V capacitor C41 82 1 CFVST_6n8_63V 6n8 10%								
74 1 CFVST_6n8_63V 6n8 10% 63V capacitor C40 75 1 CFVST_6n8_63V 6n8 10% 63V capacitor C39 76 1 CFVST_6n8_63V 6n8 10% 63V capacitor C39 76 1 CFVST_6n8_63V 6n8 10% 63V capacitor C34 77 1 CFVST_6n8_63V 6n8 10% 63V capacitor C35 78 1 CFVST_6n8_63V 6n8 10% 63V capacitor C35 79 1 CFVST_6n8_63V 6n8 10% 63V capacitor C37 80 1 CFVST_6n8_63V 6n8 10% 63V capacitor C30 81 1 CFVST_6n8_63V 6n8 10% 63V capacitor C30 82 1 CFVST_6n8_63V 6n8 10% 63V capacitor C41 83 1 CFVST_6n8_63V 6n8 10%							-	
75 1 CPVST_6n8_63V 6n8 10% 63V capacitor C39 76 1 CPVST_6n8_63V 6n8 10% 63V capacitor C34 77 1 CPVST_6n8_63V 6n8 10% 63V capacitor C35 78 1 CPVST_6n8_63V 6n8 10% 63V capacitor C29 78 1 CPVST_6n8_63V 6n8 10% 63V capacitor C35 79 1 CPVST_6n8_63V 6n8 10% 63V capacitor C37 80 1 CPVST_6n8_63V 6n8 10% 63V capacitor C30 81 1 CPVST_6n8_63V 6n8 10% 63V capacitor C31 82 1 CPVST_6n8_63V 6n8 10% 63V capacitor C22 83 1 CPVST_6n8_63V 6n8 10% 63V capacitor C23							-	
76 1 CFVST_6n8_63V 6n8 10% 63V capacitor C34 77 1 CFVST_6n8_63V 6n8 10% 63V capacitor C29 78 1 CFVST_6n8_63V 6n8 10% 63V capacitor C35 79 1 CFVST_6n8_63V 6n8 10% 63V capacitor C37 80 1 CFVST_6n8_63V 6n8 10% 63V capacitor C30 80 1 CFVST_6n8_63V 6n8 10% 63V capacitor C30 81 1 CFVST_6n8_63V 6n8 10% 63V capacitor C41 82 1 CFVST_6n8_63V 6n8 10% 63V capacitor C28 COD 83 1 CFVST_6n8_63V 6n8 10% 63V capacitor C28 COD								
77 1 [CPVST_6n8_63V [6n8 10% 63V [capacitor [C29] 78 1 [CPVST_6n8_63V [6n8 10% [63V [capacitor [C35] 79 1 [CPVST_6n8_63V [6n8 10% [63V [capacitor [C37] 80 11 [CPVST_6n8_63V [6n8 10% [63V [capacitor [C30] 81 11 [CPVST_6n8_63V [6n8 10% [63V [capacitor [C41] 82 11 [CPVST_6n8_63V [6n8 10% [63V [capacitor [C22] 83 11 [CPVST_6n8_63V [6n8 10% [63V [capacitor [C24]							-	
78 1 CFVST_6n8_63V 6n8 10% 63V capacitor C35 79 1 CFVST_6n8_63V 6n8 10% 63V capacitor C37 80 1 CFVST_6n8_63V 6n8 10% 63V capacitor C30 81 1 CFVST_6n8_63V 6n8 10% 63V capacitor C41 82 1 CFVST_6n8_63V 6n8 10% 63V capacitor C28 COD 83 1 CFVST_6n8_63V 6n8 10% 63V capacitor C27 COD								
79 1 [CFVST_6n8_63V [6n8 10% [63V [capacitor [C37] 80 1 [CFVST_6n8_63V [6n8 10% [63V [capacitor [C30] 81 1 [CFVST_6n8_63V [6n8 10% [63V [capacitor [C30] 81 1 [CFVST_6n8_63V [6n8 10% [63V [capacitor [C41] 82 1 [CFVST_6n8_63V [6n8 10% [63V [capacitor [C28]COD 83 1 [CFVST_6n8_63V [6n8 10% [63V [capacitor [C27]COD							-	
80 1 CPVST_6n8_63V 6n8 10% 63V capacitor C30 81 1 CPVST_6n8_63V 6n8 10% 63V capacitor C41 82 1 CPVST_6n8_63V 6n8 10% 63V capacitor C28 COD 83 1 CPVST_6n8_63V 6n8 10% 63V capacitor C27 COD								
81 1 CPVST_6n8_63V 6n8 10% 63V capacitor C41 82 1 CPVST_6n8_63V 6n8 10% 63V capacitor C28 COD 83 1 CPVST_6n8_63V 6n8 10% 63V capacitor C27 COD								
82 1 CFVST_6n8_63V 6n8 10% 63V capacitor C28 COD 83 1 CFVST_6n8_63V 6n8 10% 63V capacitor C27 COD							-	
83 1 CFVST_6n8_63V 6n8 10% 63V capacitor C27 COD								
							-	
of it loss tou itou itos iton icabacitot (C4A)			·					
	04	1-	101 1000	1 1 011	110.9	11004	Tabactor	1049

đe	
BROADCAST	ING DIVISION

BROADCAST 85 1	ING DIVISION	10n	10%	100V	lappagitan	[C50]
86 1	CPV_10n_100V CPV 470p 100V	10n 470p	110%	1100V	capacitor capacitor	[C25]COD
87 1	C4051BN		1	1	Multiplexer, Analog 8-Bit	017
88 1	C4051BN	i.	i.	i i	Multiplexer, Analog 8-Bit	U18
89 1	JFL_26M	1	I	1	Connector Flat 26 pins	J1
90 1	JFL_26M	I	I	1	Connector Flat 26 pins	J2
91 1 92 1	JFL_26M JFL_26M		1	1	Connector Flat 26 pins Connector Flat 26 pins	J7 J11
93 1	J156X10	1	1			J6
94 1	J156X14	i	i	i	i	[J5]
95 1	LM358N	i	i	i	Opamp 5-pin	[U21]
96 1	LM393N	I	I	1	Voltage Comparator	022
97 1	LM7805	I	I	I	Voltage Regulator, FIXED	[U20]
98 1	LM7808		1	!	Voltage Regulator, FIXED	019
99 1 100 1	LTUBE-D8P5 LTUBE-D8P5	1mH 1mH		1	inductor inductor	L1 L2
100 1	LTUBE-D8P5	uH		1	inductor	12
102 1	LTUBE-D8P5	uH	i	1	inductor	L3
103 1	L0305 10u	10uH	10%	i	inductor	[15]
104 1	REEDIA-HS-12V	i.	Ì	i.	BOBINA RELE	K1
105 1	REED1A-HS-12V	I	I	1	RELAIS SPDT	K1
106 1	RT_67W	2K2	10%	I	resistor	RT7
107 1	RT_67W	0K	10%		resistor	RT2
108 1 109 1	RT_67W RT_67W	500 2K2	10% 10%	1	resistor resistor	RT3 RT1
110 1	RT 67W	10K	10%	1	resistor	RT6
111 1	RT 67W	10K	10%	i	resistor	RT5
112 1	RT_67W	5K	10%	i.	resistor	RT4
113 1	R025-F-1K0	1K0	11%	Ì	resistor	R21
114 1	R025-F-1K0	1K0	1%	I	resistor	R23
115 1	R025-F-1K0	1K0	11%	1	resistor	R22
116 1	R025-F-1K0	1K0	11%		resistor	R8
117 1 118 1	R025-F-1K0 R025-F-1K0	1K0 1K0	1% 1%	1	resistor resistor	R9 R17
110 1	R025-F-1K0	1K0	118	1	resistor	R10
120 1	R025-F-1K0	11K0	11%	i	resistor	R14
121 1	R025-F-1K0	1K0	18	i	resistor	R11
122 1	R025-F-1K0	1K0	1%	I	resistor	R15
123 1	R025-F-1K0	1K0	1%	I.	resistor	R12
124 1	R025-F-1K0	1K0	118	-	resistor	R18
125 1 126 1	R025-F-1K0	1K0	11%		resistor	R13
126 1 127 1	R025-F-1K0 R025-F-1K0	1K0 1K0	1% 1%		resistor resistor	R1 R2
127 1	R025-F-1K0	11K0	11%	ł	resistor	R16
129 1	R025-F-1K0	1K0	18	i	resistor	[R24]
130 1	R025-F-1K0	1K0	18	i	resistor	[R25]
131 1	R025-F-1K0	1K0	18	1 I	resistor	R6
132 1	R025-F-1K0	1K0	118	I	resistor	R7
133 1	R025-F-1K8	1K8	118	1	resistor	R77
134 1 135 1	R025-F-1K8 R025-F-1K07	1K8 1K07	1% 1%		resistor resistor	R78 R71
136 1	R025-F-1K07	11K07	118		resistor	R72
137 1	R025-F-1K24	1K24	11%	i	resistor	R75
138 1	R025-F-1K24	1K24	18	i.	resistor	[R76]
139 1	R025-F-1K50	1K50	1%	I.	resistor	R107 COD
140 1	R025-F-1K54	1K54	1%	I	resistor	R55
141 1	R025-F-1K54	1K54	118	!	resistor	R56
142 1 143 1	R025-F-1K87 R025-F-1K87	1K87 1K87	1% 1%	1	resistor resistor	R69 R70
143 1	R025-F-2K1	2K1	118	i	resistor	R57
145 1	R025-F-2K1	2K1	11%	i	resistor	[R58]
146 1	R025-F-2K2	2K2	1%	i.	resistor	R43
147 1	R025-F-2K2	2K2	1%	I	resistor	R42
148 1	R025-F-2K2	2K2	11%	1	resistor	R41
149 1 150 1	R025-F-2K2 R025-F-2K2	2K2 2K2	1% 1%	1	resistor	R47 R45
150 1	R025-F-2K2 R025-F-2K2	2K2 2K2	118	1	resistor resistor	R45 R44
152 1	R025-F-2K2	2K2	11%	i	resistor	R29
153 1	R025-F-2K2	2K2	11%	i	resistor	R30
154 1	R025-F-2K2	2K2	1%	1	resistor	R31
155 1	R025-F-2K2	2K2	1%	1	resistor	R32
156 1	R025-F-2K2	2K2	11%	1	resistor	R33
157 1	R025-F-2K2	2K2	118	1	resistor	R35
158 1 159 1	R025-F-2K2 R025-F-2K2	2K2 2K2	1% 1%	1	resistor resistor	R34 R36
160 1	R025-F-2K2	2K2	118	1	resistor	R38
161 1	R025-F-2K2	2K2	11%	i	resistor	R48
162 1	R025-F-2K2	2K2	118	i	resistor	R37
163 1	R025-F-2K2	2K2	18	I.	resistor	R46
164 1	R025-F-2K2	2K2	11%	1	resistor	R39
165 1	R025-F-2K2	2K2	118		resistor	R40
166 1 167 1	R025-F-2K2 R025-F-2K2	2K2 2K2	1% 1%	1	resistor	R102 R101
167 1 168 1	R025-F-2K2 R025-F-2K2	2K2 2K2	1% 1%	1	resistor resistor	R101 R103
160 1	R025-F-2K2	2K2 2K2	118	1	resistor	R103 R104
170 1	R025-F-2K2	2K2	118	i i	resistor	R3
171 1	R025-F-2K2	2K2	118	Ì	resistor	R105
172 1	R025-F-2K2	2K2	18	I	resistor	R5
173 1	R025-F-2K2	2K2	11%	1	resistor	R19
174 1	R025-F-2K2	2K2	1%	I	resistor	[R20]

		2000 A					
đ	e						
		DIVISION					
175 176	1 1	R025-F-2M2 R025-F-3K9	2M2 3K9			resistor resistor	R94 R95
177	11	R025-F-3K30	3K30		1	resistor	R111 COD
178	1	R025-F-5K6	5K6		I	resistor	R96
179 180	1 1	R025-F-5K6 R025-F-6K81	5K6 6K81	•	1	resistor resistor	R97 R4 COD
181	11	R025-F-8K2	8K2		1	resistor	R100
182	1	R025-F-8K25	8K25		1	resistor	R82 COD
183 184	1 1	R025-F-10K R025-F-10K	10K 10K	•		resistor resistor	R85 R84
185	1	R025-F-10K	10K			resistor	R83
186	1	R025-F-10K	10K	•	I	resistor	R81
187 188	1 1	R025-F-10K0 R025-F-10K0	10K0 10K0	•	1	resistor resistor	R113 COD R114 COD
189	11	R025-F-10K0	10K0			resistor	R115 COD
190	1	R025-F-15K	15K		1	resistor	R89
191 192	1 1	R025-F-18K R025-F-18K0	18K 18K0	•		resistor resistor	R99 R120 COD
193	11	R025-F-18K0	18K0		1	resistor	R119 COD
194	1	R025-F-18K0	18K0	11%	I	resistor	R110 COD
195 196	1 1	R025-F-27K0 R025-F-33K	27K4 33K			resistor resistor	R98 COD R93
197	11	R025-F-33K	33K	11%	1	resistor	R92
198	1	R025-F-33K0	33K0		l	resistor	R109 COD
199	1	R025-F-33K0	33K0		1	resistor	R112 COD
200 201	1 1	R025-F-47R R025-F-95K3	47R 95K3	1% 1%	1	resistor resistor	R91 R53
202	1	R025-F-95K3	95K3		i	resistor	R54
203	1	R025-F-100K	100K	11%	I	resistor	R73
204 205	1	R025-F-100K R025-F-100K	100K		1	resistor	R74
205 206	1 1	R025-F-100K	100K 100K		1	resistor resistor	R117 COD R116 COD
207	1	R025-F-100K	100K		l	resistor	R118 COD
208	1	R025-F-100R	100R	11%	1	resistor	R51
209 210	1 1	R025-F-100R R025-F-100R	100R 100R	•	1	resistor resistor	R52 R49
211	1	R025-F-100R	100R	11%		resistor	R50
212	1	R025-F-120R	120R	•	I	resistor	R26
213 214	1 1	R025-F-120R R025-F-120R	120R 120R	•	1	resistor resistor	R27 R28
214	11	R025-F-150R	1120R	•	1	resistor	R108 COD
216	1	R025-F-243R	243R	11%	I	resistor	[R59]
217	1	R025-F-243R	243R	•	1	resistor	R60
218 219	1 1	R025-F-330R R025-F-330R	330R 330R	•	1	resistor resistor	R87 R88
220	1	R025-F-390R	390R		i	resistor	[R79]
221	1	R025-F-390R	390R	•	!	resistor	R80
222 223	1 1	R025-F-500R R025-F-562R	500R 562R	1% 1%	1	resistor resistor	R86 R61
224	11	R025-F-562R	562R	11%	1	resistor	R62
225	1	R025-F-680R	680R	11%	I	resistor	R90
226 227	1 1	R025-F-768R R025-F-768R	768R 768R	•		resistor resistor	R63 R64
228	11	R025-F-822R	822R		1	resistor	R106 COD
229	1	R025-F-825R	825R	11%	İ	resistor	R65
230	1	R025-F-825R	825R		1	resistor	R66
231 232	1 1	R025-F-825R R025-F-825R	825R 825R	•	1	resistor resistor	R68 R67
233	1	TIP127	I		i	Transistor, PNP Darlington	Q2
234	11	TL072N	1		l .	Opamp 5-pin	U1
235 236	1 1	TL072N TL072N	1			Opamp 5-pin Opamp 5-pin	U2 U3
237	11	TL072N	I			Opamp 5-pin	U4
238	1	TL072N	1		1	Opamp 5-pin	1051
239 240	1 1	TL072N TL072N	1		1	Opamp 5-pin Opamp 5-pin	06 07
241	1	TL072N	i		i	Opamp 5-pin	1081
242	11	TL072N	I		1	Opamp 5-pin	U9
243 244	1 1	TL072N TL072N	1			Opamp 5-pin	
244 245	1 1	TL072N	1		1	Opamp 5-pin Opamp 5-pin	U11 U12
246	11	TL072N	i			Opamp 5-pin	[U13]
247	1	TL072N	1	•	1	Opamp 5-pin	10151
248 249	1 1	TL072N TL072N	1			Opamp 5-pin Opamp 5-pin	U14 U16
250	11	VP0610L	i		1	Mosfet, N-chan Power	10101
251	1	VP0610L	1		1	Mosfet, N-chan Power	Q3
252 253	1 1	ZPD8V2 ZPD12V	1		1	zener diode zener diode	DZ2 COD DZ1 COD
253 254	11	Z3-100	1	•	1	zener diode	D21 COD 21
255	11	z3-100	Ì		l	i	22
256	11	Z3_P100	1	•	1	 diada	Z3
257 258	1 1	1N4148 74HC00N	1		1	diode Gate, 2-Input NAND	D1 U23
			•	•	-	, F	

KEY BOARD - KEY

KEY BOARD - KEY

item	lqty	part number	Val	Tol	Work.Volt	. description	
1	1	BERG100M2X07V	i i	i.	Í.	Physical Connector	J1
2	1	LED_D3V	I	1 I	I	photoemissive diode	DL3
3	1	LED_D3V	I.	1	I	photoemissive diode	DL2
4	1	RSIP8C 10K	10K	5%	I	1	RR1
5	1	SP 3FT	I	I	I	1	P1
6	1	SP_3FT	I.	1	I	1	P2
7	1	SP 3FT	I.	1	I	1	P3
8	1	SP_3FT	I	1	I	1	P4
9	1	SP 3FT	I.	1	I	1	P5
10	1	SP_3FT	I	1	I	1	 P6
11	1	SP 3FT	I.	1	I	1	P8
12	1	SP 3FTL	I	I	I	1	P7DL1
13	1	SP_3FTL	I	1	1	photoemissive diode	P7DL1

SINTD BOARD - VCO OSCILLATOR

SINTD BOARD - VCO OSCILLATOR

item	latv	part number	Val	Tol	Work.Volt.	description	
	11					Transistor, NPN BJT	Q2
	11	•	•		•	Transistor, NPN BJT	Q3
	11	• •	•		' 		J2
	11		•		-	' Transistor, NPN BJT	1021
	11	•	•		•	Transistor, NPN BJT	Q5
	11	•	•		•	Transistor, NPN BJT	Q4
	11	•		•	' 35V		C19
	11	-	•				[C16]
	11	-				•	
	11	· _	•	•	•	1	C15
	•	-	•			1	C17
	11	· _	•		35V	 Conviel Time	C21
	1					Coaxial Line	Coax1
	11	•	•			capacitor	C38
	1	•	•			capacitor	C26
	1					capacitor	[C27]
	11	•	•	•		capacitor	C34
	11	•				capacitor	[C28]
	11	•		20	•	capacitor	[C35]
	1	•		20		capacitor	[C39]
	1	•	•	20	•	capacitor	C40
	1					capacitor	C29
	1	•		20	I	capacitor	C41
	1	•	•	20	I	capacitor	C24
24	1	C1210	1n	20	I	capacitor	C36
25	1	C1210	1n	20	I	capacitor	C31
26	1	C1210	1n	20	I	capacitor	C42
27	1	C1210	1n	20	I	capacitor	C25
28	1	C1210	1n	20	I	capacitor	C32
29	1	C1210	1n	20	I	capacitor	C30
30	1	C1210	1n	20	I	capacitor	[C55]
31	1	C1210	1n	20	I	capacitor	C56
32	1	C1210	1n	20	I	capacitor	C57
33	1	C1210	1n	20	I	capacitor	[C2]
34	1	C1210	1n	20	I	capacitor	[C51]
35	11	C1210	1n	20		capacitor	[C33]
36	11	C1210	1n	20		capacitor	[C58]
37	11	C4016BD				Analog Switch, Bilateral	[U13]
	11	•	•				Z 1
	11				•	diode	[D3]
	11		•	•	•	diode	[D5]
	11	HSS2800	•	•		diode	D4
	11	LF353D				Opamp 5-pin	U2
	11	LL4148	•	•		diode	[D7]
	11	LL4148	•	•		diode	[D6]
	11	LL4148	1		•	diode	[D1]
	11	LL4148	1		-	diode	[D2]
	11	LMX2306D	1	•	1		U4
	11		•	•	•	Opamp 5-pin	U6
	11	•	1	1	•	Opamp 5-pin	
	11	•	 1mH	•	•	inductor	U7 L3
	•	-		•			
	1 1	· · _ ·	•	 	•	inductor	L2 L1
	•	-			•	linductor	
	1 1	· · · ·	1.6-16 pF 		_	capacitor	CV1 U3
	11	•	•		-	1	
	•	•		•	•	-	U14
	11					JFET, N-chan	Q1
	11		•			Transistor, NPN BJT	1061
	11		· · · ·			Varactor	DV1
	11		• •			Varactor	DV2
	11		•		•	Varactor	DV3
	11					Varactor	DV4
	11		• •	•		Varactor	DV5
	11					Varactor	DV6
	1		• •			Varactor	DV7
	1		•	•		Varactor	DV8
	1		-			Varactor	DV9
	1		uH	•		linductor	14
	1	—		10%	I	resistor	RT1
	1	R1206-F-42K0			I	resistor	R30 COD
	1			5%	•	resistor	R3
71	1	R1206-J-1K0	1K0	5%	I	resistor	R5

cte							
INTERNAL D	MAL H	1-20					
	ASTING		1K2	5%	I	resistor	R13
					-	resistor	R67 COD
				15%	l	resistor	R48
75 I	1	R1206-J-2K2	2K2	5%	I	resistor	R49
				5%	I	resistor	R58 COD
				• • •		resistor	R4 COD
				15%		resistor	R1
				15%		resistor	R10
				5% 5%	-	resistor resistor	R11 R9
				15%	-	resistor	[R36]COD
				15%		resistor	R17 COD
				15%	-	resistor	R31
85 I	1	R1206-J-10K	10K	5%	I	resistor	R37
86 I	1	R1206-J-10K	10K	5%	I	resistor	R28
87 I	1	R1206-J-10K	10K	5%	I	resistor	R29
				15%		resistor	R33
				15%		resistor	R27
				15%		resistor resistor	R35
		•		5% 5%	-	resistor	R34 R64
		•		15%		resistor	R54 COD
				15%		resistor	R59
						resistor	R14 COD
96	1	R1206-J-18K	18K	5%	l	resistor	R32 COD
97 I	1	R1206-J-22K	22K	5%	I	resistor	R57
	1	R1206-J-22K	22K	5%	I	resistor	R56
				5%		resistor	R55
				15%		resistor	R66
				15%		resistor	R12
				5% 5%		resistor resistor	R65 R60
				15%		resistor	R46
				15%		resistor	R45
				15%		resistor	R41 COD
				15%		resistor	R8
108	1	R1206-J-82K	82K	5%	I	resistor	R6
109	1	R1206-J-82K	82K	5%	I	resistor	R7
				5%		resistor	R47 COD
		•		15%		resistor	R15
				15%		resistor	R16
				5% 5%		resistor resistor	R40 R42
•		•	•	15%		resistor	R51
				15%		resistor	[R50]
		•		15%	•	resistor	[R38]
118	1	R1206-J-200R	200R	15%	I	resistor	[R39]
119	1	R1206-J-200R	200R	5%	I	resistor	R44 COD
120	1	R1206-J-330R	330R	5%	I	resistor	R23
				15%	•	resistor	R25
				15%		resistor	R24
						resistor resistor	R26 R18
					-	resistor	[R19]
		•			•	resistor	[R20]
					-	resistor	R21
128	1	R1206-J-330R	330R	15%	I	resistor	R22
129	1	R1206-J-360R	360R	5%	I	resistor	R2 COD
					I	resistor	R52
				• • •		resistor	R69 COD
				•		resistor	R53 COD
				• • •		resistor resistor	R71 COD R43 COD
						resistor	R43 COD R70 COD
					•	resistor	R72 COD
						resistor	R68 COD
		•			•	resistor	R62
						resistor	R63
				•		resistor	R61
				•		BNC	J1
					• -	1	C18 COD
		—			-	1	
		TAJ_10u-25V 10u-25V 10u 20%		20% 	25V C12 COD	1	C11 COD
				 20%	25V	I	C13 COD
		—				I	C1 COD
						I	C14 COD
	1	TAJ_10u-25V			25V	I	C37 COD
					16V	I	C20 COD
		· _			116V	1	[C53]COD
		_			16V	1	C54 COD
					1	l Lanan désde	U5
				•		zener diode zener diode	DZ1 DZ2
						capacitor	DZ2 C46 COD
						capacitor	C46 COD C45
		-	-			capacitor	[C50]COD
		-				capacitor	[C47]
		-	68p	10%		capacitor	C44
161	1	c1206-100n	100n	10%	25V	capacitor	C8

C	ē							TX50S manual
162	11	c1206-100n	100n	10%	25V	capacitor	[C6]	
163	1	c1206-100n	100n	10%	25V	capacitor	[C10]	
164	1	c1206-100n	100n	10%	25V	capacitor	[C7]	
165	1	c1206-100n	100n	10%	25V	capacitor	[C5]	
166	1	c1206-100n	100n	10%	25V	capacitor	[C9]	
167	1	c1206-100n	100n	10%	25V	capacitor	[C3]	
168	1	c1206-100n	100n	10%	25V	capacitor	C52 COD	
169	1	c1206-150p	150p	10%	100V	capacitor	C49	
170	1	c1206-150p	150p	10%	100V	capacitor	C48	
171	1	c1206-220n	220n	10%	15V	capacitor	[C23]	
172	1	c1206-470n	470n	10%	15V	capacitor	[C22]	
173	1	c1206-470n	470n	10%	15V	capacitor	C43 COD	
174	1	74HC08D	I	I	I	Gate, 2-Input AND	01	

DMPX BOARD - STEREOCODER

DMPX BOARD - STEREOCODER

item		part number	Val	Tol	Work.Volt.	description	
1	1	BERG100M1X08V	1		1		J1
2	1	BERG100M1X08V	1	1	•		J2
3	1	C4011BD	1			Gate, 2-Input NAND	U1
4 5	1	C4011BD	!			Gate, 2-Input NAND	U21
	1	C4011BD	1	1		Gate, 2-Input NAND	U7
6	1	C4011BD	1	1		Gate, 2-Input NAND	U12
7	11	C4013BD		1		Flip-Flop, D-Type	U8
8	11	C4013BD				Flip-Flop, D-Type	013
9	11	C4017BD	1			Counter/Divider, Decade	1061
10	11	C4017BD				Counter/Divider, Decade	011
11	11	C4029BD			1		10231
12	11	C4029BD				1	1051
13	1	C4040BD	I	I	I	Counter, 12-Stage	U2
14	11	C4051BD	1	1	1	Multiplexer, Analog 8-Bit	U3
15	1	C4051BD	I	I	I	Multiplexer, Analog 8-Bit	04
16	1	C4051BD	I	1	I	Multiplexer, Analog 8-Bit	1091
17	1	C4051BD	I	I	I	Multiplexer, Analog 8-Bit	010
18	1	C4051BD	I	1	I	Multiplexer, Analog 8-Bit	U15
19	1	C4051BD	I	I	I	Multiplexer, Analog 8-Bit	020
20	1	LL4148	I	1	I	diode	D1
21	1	LL4148	I	1	I	diode	D2
22	1	RT_3314J	1K	10%	I	resistor	RT1
23	1	RT_3314J	100	10%	I	resistor	RT3
24	1	RT_3314J	10K	10%	I	resistor	RT2
25	1	R1206-F-1K0	1K0	1%	1	resistor	R43
26	1	R1206-F-1K3	1K3	1%	I	resistor	R47
27	1	R1206-F-1K8	1K8	1%	1	resistor	R34
28	1	R1206-F-2K2	2K2	1%	1	resistor	R27
29	1	R1206-F-2K2	2K2	1%	1	resistor	R28
30	1	R1206-F-2K2	2K2	1%	I	resistor	R39
31	1	R1206-F-2K2	2K2	1%	1	resistor	R33
32	1	R1206-F-2K2	2K2	1%	I	resistor	R31
33	1	R1206-F-2K7	2K7	1%	1	resistor	R40
34	1	R1206-F-2K7	2K7	1%	I	resistor	R10
35	1	R1206-F-2M2	2M2	18	1	resistor	R46
36	11	R1206-F-8K2	8K2	1%		resistor	[R23]
37	11	R1206-F-8K2	8K2	18	i	resistor	[R49]
38	11	R1206-F-10K	10K	1%		resistor	R41
39	11	R1206-F-10K	10K	1%	i	resistor	[R50]
40	11	R1206-F-10K	10K	1%	i	resistor	[R22]
41	11	R1206-F-10K	10K	18	i	resistor	R48
42	11	R1206-F-10K	10K	11%		resistor	R42
43	j1	R1206-F-51R	51R	1%	•	resistor	[R30]
44	11	R1206-F-68R	68R	11%		resistor	[R36]
45	11	R1206-F-68R	68R	1%	•	resistor	[R37]
46	11	R1206-F-68R	68R	11%		resistor	[R21]
47	11	R1206-F-68R1	68R1	1%	•	resistor	[R2]
48	11	R1206-F-100K	100K	1%		resistor	[R32]
49	11	R1206-F-100R	100R	11%		resistor	[R20]
50	11	R1206-F-100R	100R	11%	•	resistor	R45
51	11	R1206-F-100R	100R	11%		resistor	R44
52	11	R1206-F-100R	100R	11%	i	resistor	R26
53	11	R1206-F-100R	100R	11%	i	resistor	[R29]
54	11	R1206-F-100R	100R	11%		resistor	R24
55	11	R1206-F-100R	100R	11%	i		R35
56	11	R1206-F-100R	1100R	11%		resistor	R38
57	11	R1206-F-162R	162R	11%		resistor	[R19]
58	1	R1206-F-162R	162R	11%		resistor	R12
59	11	R1206-F-180R	180R	11%		resistor	R1
60		R1206-F-200R					
61	1 1	R1206-F-324R	200R 324R	1% 1%		resistor	R3 R4
62	11	R1206-F-432R				resistor	
		R1206-F-432R R1206-F-453R	432R	11%		resistor	R5 R19
63 64	1 1	•	453R	11%	•	resistor	R18 B13
64 65	1	R1206-F-453R	453R	11%		resistor	R13
65 66	1	R1206-F-500R	500R	118		resistor	R25
66 67	1	R1206-F-536R	536R	11%		resistor	R6
67	1	R1206-F-604R	620K	1%		resistor	R7
68	1	R1206-F-649R	649R	118		resistor	R8
69	1	R1206-F-681R	681R	1%		resistor	R9
70	1	R1206-F-681R	681R	11%	•	resistor	R17
71	1	R1206-F-681R	681R	1%		resistor	R14
72	1	R1206-F-806R	806R	1%	I	resistor	R16

	2						
INTER	COMU.						
		G DIVISION					
73 74	1	R1206-F-806R	806R	11%		resistor	R15
75	1 1	TAJ_10u-25V TAJ 10u-25V	10u 10u	20% 20%	25V 25V		C4 C8
76	11	TAJ 10u-25V	10u	20%	25V		C14
77	1	TAJ 10u-25V	10u	20%	25V	i	[C17]
78	1	TAJ_10u-25V	10u	20%	25V	1	[C20]
79	1	TAJ_10u-25V	10u	20%	25V	I	C21
80	1	TAJ_10u-25V	10u	20%	25V	1	[C9]
81	1	TAJ_10u-25V	10u	20%	25V		C7
82 83	1 1	TL072D TL072D				Opamp 5-pin Opamp 5-pin	U14 U16
84	11	TL072D	1	i	ł	Opamp 5-pin	[U19]
85	1	TL072D	i	i	i	Opamp 5-pin	[U22]
86	1	TZBX4	22p	15%	I	capacitor	[C22]
87	1	XT-HC49U	MHz	I.	I.	Crystal	XT1
88	1	c1206-10p	10p	10%	100V	capacitor	[C3]
89	11	c1206-10p	10p	10%	100V	capacitor	[C18]
90	1	c1206-22p	22p	10%	100V	capacitor	[C2]
91 92	1	c1206-100n	100n	110%	25V	capacitor	CF2
92 93	1 1	c1206-100n c1206-100n	100n 100n	10% 10%	25V 25V	capacitor	CF2A CF1A
94	11	c1206-100n	100n	110%	25V	capacitor capacitor	(CF1)
95	11	c1206-100n	100n	110%	25V	capacitor	[CF6]
96	11	c1206-100n	100n	110%	25V	capacitor	CF6A
97	1	c1206-100n	100n	10%	25V	capacitor	[CF11]
98	1	c1206-100n	100n	10%	25V	capacitor	CF11A
99	1	c1206-100n	100n	10%	25V	capacitor	CF23
100	1	c1206-100n	100n	10%	25V	capacitor	CF23A
101	1	c1206-100n	100n	110%	25V	capacitor	CF10
102 103	1 1	c1206-100n c1206-100n	100n 100n	10% 10%	25V 25V	capacitor capacitor	CF10A CF9
103	11	c1206-100n	100n	110%	25V	capacitor	[CF9A]
105	11	c1206-100n	100n	110%	25V	capacitor	[CF8]
106	1	c1206-100n	100n	10%	25V	capacitor	CF8A
107	1	c1206-100n	100n	10%	25V	capacitor	CF5
108	1	c1206-100n	100n	10%	25V	capacitor	CF5A
109	1	c1206-100n	100n	10%	25V	capacitor	CF4
110 111	1 1	c1206-100n	100n	110%	25V	capacitor	CF4A
112	11	c1206-100n c1206-100n	100n 100n	10% 10%	25V 25V	capacitor capacitor	CF3 CF3A
112	11	c1206-100n	100n	110%	25V	capacitor	CF7
114	11	c1206-100n	100n	10%	25V	capacitor	CF7A
115	1	c1206-100n	100n	110%	25V	capacitor	[CF20]
116	1	c1206-100n	100n	10%	25V	capacitor	CF20A
117	1	c1206-100n	100n	10%	25V	capacitor	CF21
118	1	c1206-100n	100n	10%	25V	capacitor	CF21A
119	1	c1206-100n	100n	110%	25V	capacitor	(CF13)
120 121	1 1	c1206-100n c1206-100n	100n 100n	10% 10%	25V 25V	capacitor	CF13A CF12
121	11	c1206-100n c1206-100n	100n 100n	110%	25V 25V	capacitor capacitor	(CF12)
122	11	c1206-100n	100n	110%	25V	capacitor	[CF15A]
124	1	c1206-100n	100n	10%	25V	capacitor	(CF15)
125	1	c1206-100p	100p	10%	100V	capacitor	[C1]
126	1	c1206-100p	100p	10%	100V	capacitor	(C15)
127	1	c1206-100p	100p	110%	100V	capacitor	[C5]
128	1	c1206-100p	100p	10%	100V	capacitor	C19
129 130	1	c1206-150p	150p	110%	100V	capacitor	C16 C26
130 131	1 1	c1206-150p c1206-150p	150p 150p	10% 10%	100V 100V	capacitor capacitor	C26 C25
132	11	c1206-150p	150p	110%	100V	capacitor	[C6]
133	11	c1206-150p	150p	110%	1100V	capacitor	C24
134	11	c1206-150p	150p	10%	100V	capacitor	[C23]

AGC BOARD- AUDIO AUTOMATIC GAIN CONTROL

AGC BOARD - AUDIO AUTOMATIC GAIN CONTROL

AGC BOARD - AUDIO AUTOMATIC GAIN CONTROL

item		part number Magazzino	Val	Tol	Work.Volt.	description	
1	11	BERG100M1X12V	I.	1	1	I	J1
2		C4051BD	i		i	Multiplexer, Analog 8-Bit	U2
3	•	C4051BD	I	I	L	Multiplexer, Analog 8-Bit	U3
4	•	C4051BD	!	!	1	Multiplexer, Analog 8-Bit	04
5 6		C4051BD	1	1		Multiplexer, Analog 8-Bit	1051
ю 7	1 1	LL4148 LL4148	1	1	•	diode diode	D2 D1
8	•	LL4148	i	i		diode	D4
9		LL4148	Ì	i		diode	[D3]
10	1	L1812_6u8H	6,8uH	10	L	linductor	11
11		RT_3314J-10K	10K	110%		resistor	RT1 COD
12 13	1 1	R1206-F-5K11 R1206-F-5K23	5K11 5K23	1% 1%		resistor resistor	R33 COD R32 COD
14	•	R1206-F-5K49	5K49	11%	•	resistor	R31 COD
15	•	R1206-F-5K76	5K76	11%	•	resistor	R30 COD
16	11	R1206-F-5K90	5K90	11%		resistor	R29 COD
17	•	R1206-F-6K19	6K19	1%	L	resistor	R28 COD
18	•	R1206-F-6K49	6K49	11%		resistor	R27 COD
19 20	1 1	R1206-F-6K81 R1206-F-7K15	6K81 7K15	1% 1%		resistor	R26 COD
20	•	R1206-F-7K50	7K15	118	•	resistor resistor	R25 COD R24 COD
22	•	R1206-F-7K87	17K87	11%		resistor	R23 COD
23	11	R1206-F-8K06	8K06	11%		resistor	R22 COD
24	1	R1206-F-8K45	8K45	1%	L	resistor	R21 COD
25		R1206-F-8K87	8687	11%		resistor	R20 COD
26 27		R1206-F-9K31 R1206-F-9K76	9K31	11%		resistor	R19 COD
27	•	R1206-F-10K0	9K76 10K0	1% 1%		resistor resistor	R18 COD R52 COD
29	•	R1206-F-10K2	110K2	118		resistor	R17 COD
30		R1206-F-10K5	10K5	11%		resistor	R16 COD
31	1	R1206-F-11K0	11K0	1%	L	resistor	R15 COD
32	•	R1206-F-11K5	11K5	11%		resistor	R14 COD
33 34			12K1	11%		resistor	R13 COD
34 35	1 1	R1206-F-12K7 R1206-F-13K3	12K7 13K3	1% 1%		resistor resistor	R12 COD R11 COD
36	•	•	14K	118	•	resistor	R10 COD
37		R1206-F-14K7	14K7	11%		resistor	R9 COD
38	1	R1206-F-15K8	15K8	1%	L	resistor	R7 COD
39		R1206-F-16K4	16K4	11%		resistor	R8 COD
40 41	1 1	R1206-F-16K5 R1206-F-17K4	16K5 17K4	1% 1%		resistor resistor	R6 COD R5 COD
42	•	R1206-F-18K2	11/K4 18K2	11%		resistor	R4 COD
43	•	R1206-F-19K1	19K1	11%		resistor	R3 COD
44	1	R1206-F-20K0	20K0	1%	L	resistor	R2 COD
45	•	R1206-J-1K0	1K0	5%	I	resistor	R39 COD
46	•	R1206-J-1M0	1M	15%		resistor	R45 COD
47 48		R1206-J-2K2 R1206-J-2K2	2K2 2K2	5% 5%		resistor resistor	R35 COD R37 COD
49	•	R1206-J-2K2	2K2	15%		resistor	R38 COD
50	•	R1206-J-3K9	3K9	15%		resistor	R44 COD
51	1	R1206-J-5K6	5K6	5%	L	resistor	R43 COD
52	1	R1206-J-5K6	586	5%		resistor	R50 COD
53	11	R1206-J-10K	10K	15%	1	resistor	R36 COD
54 55	1 1	R1206-J-10K R1206-J-18K	10K 18K	5% 5%	1	resistor resistor	R48 COD R1 COD
56	11	R1206-J-22K	22K	15%		resistor	R51 COD
57		R1206-J-27K	27K	15%		resistor	R46 COD
58		R1206-J-47R	47R	15%		resistor	R41 COD
59		R1206-J-56K	56K	15%		resistor	R42 COD
60 61		R1206-J-56K	56K	15%		resistor	R49 COD
61 62		R1206-J-270R R1206-J-270R	270R 270R	5% 5%		resistor resistor	R34 COD R40 COD
63		R1206-J-330R	330R	15%		resistor	R40 COD
64		ST62E25M1		1	i		101
65	1	TAJ_10u-25V	10u	20%	25V	I	CF6 COD
66	1	TAJ_10u-25V	10u		25V		CF6A COD
67 68	1 1	TL072D TL072D	1	1	1	Opamp 5-pin Opamp 5-pin	U6 U7
69	11	TL072D	1		1	Opamp 5-pin	1071 U81
			•	•	•		

70	1	TL072D	I	I	I	Opamp 5-pin	ן פטן	
71	1	XT-HC49U	MHz	I	I	Crystal	XT1A	
72	1	XT-KX20	MHz	I	I.	Crystal	XT1	
73	1	ZMM5V6	I	I	I	zener diode	DZ1 COD	
74	1	Z3_P100	I	I	I.	I	21	
75	1	c1206-33p	33p	10%	100V	capacitor	C2 COD	
76	1	c1206-33p	33p	10%	100V	capacitor	C1 COD	
77	1	c1206-100n	100n	10%	25V	capacitor	CF2 COD	
78	1	c1206-100n	100n	10%	25V	capacitor	CF2A COD	
79	1	c1206-100n	100n	10%	25V	capacitor	CF4 COD	
80	1	c1206-100n	100n	10%	25V	capacitor	CF5 COD	
81	1	c1206-100n	100n	10%	25V	capacitor	CF5A COD	
82	1	c1206-100n	100n	10%	25V	capacitor	CF3 COD	
83	1	c1206-100n	100n	10%	25V	capacitor	CF3A COD	
84	1	c1206-100n	100n	10%	25V	capacitor	C4 COD	
85	1	c1206-100n	100n	10%	25V	capacitor	CF7 COD	
86	1	c1206-100n	100n	10%	25V	capacitor	CF7A COD	
87	1	c1206-100n	100n	10%	25V	capacitor	CF9A COD	
88	1	c1206-100n	100n	10%	25V	capacitor	CF9 COD	
89	1	c1206-100n	100n	10%	25V	capacitor	CF8A COD	
90	1	c1206-100n	100n	10%	25V	capacitor	CF8 COD	
91	1	c1206-100n	100n	10%	25V	capacitor	CF4A COD	
92	1	c1206-470n	470n	10%	15V	capacitor	C3 COD	
93	1	c1206-470n	470n	10%	15V	capacitor	C5 COD	

Pag. 101

CON BOARD - MBA / RFDC CONNECTION

CON BOARD - MBA/RFDC CONNECTION

CON BOARD - MBA/RFDC CONNECTION

Item	lqty	part number	Val	Tol	Work.Volt	.description	
1	1	CCM 100n	100n	10%	1	capacitor	C1
2	1	CCM_100n	100n	10%	1	capacitor	[C2]
3	1	CCM 100n	100n	10%	1	capacitor	[C3]
4	1	J156x10	1	I	1	1	J1
5	1	PAD_160X140	1	I I	1	Pin Wire	W1
6	1	PAD_160X140	1	I	1	Pin Wire	W2
7	1	PAD 160X140	1	I I	1	Pin Wire	W3
8	1	PAD 160X140	I	I	I	Pin Wire	W4
9	1	PAD_160X140	1	I I	1	Pin Wire	W5
10	1	PAD_160X140	I.	I	I.	Pin Wire	W6
11	1	TIP122	I.	I.	I.	Transistor, NPN Darlington	Q1

40WN BOARD - RF POWER MODULE

40WN BOARD- RF POWER MODULE

40WN BOARD - RF POWER MODULE

item	lqty	part number	description	references
1	1	BFQ68	NPN 4 GHz Wideband Transistor	102
2	11	BFR96	NPN 4 GHz Wideband Transistor	101
3	116	CSMD-HQ	Chip High Frequency Monolithic Cerami	
4	9	C1210	Capacitor SMD 1210	C1-C5,C14-C15,C17,C38
5	11	DU2860U	N-Channel RF Power MOSFET (MaCom)	
6	11	LCS ELCA1	BOBINA SU C.S. Ri=2.6mm, W=0.4mm,	S=1mm, N=2.5 AVV. L1
7	11	LCS ELCA2	BOBINA SU C.S. Ri=2.6mm, W=0.4mm,	S=1mm, N=2.5 AVV. L2
8	i1	LCS ELCA3	BOBINA SU C.S. Ri=2.2mm, W=0.6mm,	
9	12	LL4148	ldiode	D1-D2
10	11	L VK200 P600	Inductor PTH VK200 PASSO 600th	L14
11	11	L 2SP 5D 2L	Bobina 2 Spire, diametro 5mm, laro	hezza 2mm, a Saldare L4
12	j1	L 2SP 5D 6L	Bobina 2 Spire, diametro 5mm, larg	
13	11	L 2SP 7D 3L	Bobina 2 Spire, diametro 7mm, laro	
14	12	L 4SP 7D 8L	Bobina 4 Spire, diametro 7mm, larg	
15	11	L 6SP 8D 12L	Bobina 6 Spire, diametro 8mm, larg	
16	11	L 6SP 8D 15L	Bobina 6 Spire, diametro 8mm, larg	
17	11	L 6SP 8D 18L	Bobina 6 Spire, diametro 8mm, larg	
18	11	L 85P 8D 8L	Bobina 8 Spire, diametro 8mm, larg	, , ,
19	11	L 20SP 6D 17L	Bobina 20 Spire, diametro 6mm, lar	
20	12	L1812	Inductor SMD 1812	L15-L16
21	4	PAD 160X140	PAD X C.S. TIPO SMD 160X140 mills	•
22	2	RT 3314J	TRIMMER SMD 4 x 4.7 mm	RT1-RT2
23	j1	R1206-J-5K6	RESISTOR SMD 1206	R4
24	j1	R1206-J-10R	RESISTOR SMD 1206	R9
25	11	R1206-J-15R	RESISTOR SMD 1206	IR6
26	11	R1206-J-56R	resistor	R1
27	11	R1206-J-100R	RESISTOR SMD 1206	R5
28	11	R1206-J-270R	resistor	R2
29	12	R1206-J-470R	RESISTOR SMD 1206	R7-R8
30	12	R1206-J-680R	RESISTOR SMD 1206	R10,R24
31	114	R2512	RESISTOR SMD 2512	R3,R11-R23
32	j1	SMB-A	Female Right Angle SMB, PCB Mounti	
33	11	TAJ 10u-25V	TAJ Tantalium Capacitor SMD Size	
34	11	ZMM5V6	Zener Diode 0,5 W - 5.6 V	DZ1
35	11	c1206-33p	CAPACITOR SMD 1206	IC10
36	2	c1206-47p	CAPACITOR SMD 1206	C6-C7
37	11	c1206-56p	CAPACITOR SMD 1206	1C8
38	11	c1206-68p	CAPACITOR SMD 1206	1C37
39	4	c1206-100n	CAPACITOR SMD 1206	C12,C20,C35-C36
40	12	c1206-100p	CAPACITOR SMD 1206	[C9,C16
41	j1	c1206-150p	CAPACITOR SMD 1206	C18
	-	• •		

RFDC BOARD - DIRECTIONAL COUPLER

RFDC BOARD - DIRECTIONAL COUPLER

item	lqty	part number	Val	Tol	Work.Volt.	description	
1	1	BNC-A	1	I	I	BNC	J2
2	1	C1210	1n	10%	1	capacitor	C2
3	1	C1210	1n	10%	1	capacitor	C3
4	11	IC1210	1n	10%	1	capacitor	C7
5	11	IC1210	1n	10%	i	capacitor	1C81
6	11	Elca Coupler RFDC	i	1	i	1	TC1
7	11	HSS2800	i	i	i	diode	D1
8	11	HSS2800	i	i	i	diode	D2
9	11	1HSS2800	1	i	i	ldiode	[D3]
10	11	HSS2800	1	1	1	ldiode	D4
11	11	L1812	-	1	1	linductor	L1
12	11	L1812			1		
13	•	•	•	1	•	inductor	L2
13	1	NE5532D	-	-	1	Opamp 5-pin	101
	11	PAD_160X140	1		1	Physical Connector	J6
15	1	PAD_160X140	1		1	Physical Connector	J7
16	11	PAD_160X140	1	1	1	Physical Connector	J4
17	1	PAD_160X140	I	I	I	Physical Connector	J5
18	11	PAD_160X140	I	1	1	Physical Connector	J1
19	1	RT_3314J	2K2	I	I	resistor	RT1
20	1	[RT_3314J	2K2	I	I	resistor	RT2
21	1	RT_3314J	2K2	1	I	resistor	RT3
22	1	RT_3314J	2K2	I	I	resistor	RT4
23	1	R1206-J-1K0	1K	1%	I	resistor	R12
24	1	R1206-J-1K0	1K	1%	I	resistor	R11
25	1	R1206-J-1K0	1K	1%	1	resistor	R22
26	1	R1206-J-1K0	1K	1%	I	resistor	R21
27	1	R1206-J-10K	10K	1%	1	resistor	R29
28	1	R1206-J-10K	10K	1%	1	resistor	R24
29	1	R1206-J-15R	15R	1%	1	resistor	R3
30	1	R1206-J-15R	15R	1%	1	resistor	R6
31	1	R1206-J-120R	120R	1%	I.	resistor	R8
32	1	R1206-J-120R	120R	1%	1	resistor	R18
33	1	R1206-J-200R	200R	1%	I.	resistor	R16
34	1	R1206-J-200R	220R	1%	1	resistor	[R26]
35	1	R1206-J-220K	220R	1%	1	resistor	R20
36	1	R1206-J-220K	220K	1%	1	resistor	R19
37	11	R1206-J-220K	220K	1%	i i	resistor	[R9]
38	1	R1206-J-220K	220K	1%	1	resistor	R10
39	11	R1206-J-270R	270R	18	1	resistor	R15
40	11	R1206-J-270R	270R	1%	i	resistor	R14
41	11	IR1206-J-270R	270R	11%	i	resistor	[R13]
42	j1	R1206-J-270R	270R	11%	i	resistor	[R28]
43	11	R1206-J-270R	270R	11%	i	resistor	[R27]
44	11	R1206-J-270R	1270R	11%	i	resistor	R25 COD
45	11	R1206-J-330R	330R	11%	i	resistor	R7
46	11	R1206-J-330R	330R	11%	i	resistor	R17
47	11	R1206-J-470R	470R	11%	i	resistor	R1
48	11	R1206-J-470R	470R	11%	1	resistor	R4
49	11	R2512	82R	11%	1	resistor	R2
50	11	R2512	82R	118	1	resistor	R5
51	11	SMB-A	02K	110	1	BNC	J3]
51	11	c1206-0p3	 0p3	 10%	 100V	capacitor	J3 C12
52	11	c1206-0p3	0p3 1n	110%	150V		C12 C5
53 54	11	c1206-1n c1206-1n	1n 1n	110%	150V	capacitor capacitor	[C5] [C9]
54 55	11	c1206-22p	22p	110%	1100V		C9 C11
55 56	11	c1206-33p	22p 33p	10%	1100V	capacitor	[C1]
56 57	•	· -	-		•	capacitor	
57	1 1	c1206-33p c1206-100n	33p 100n	10% 10%	100V	capacitor	
58 59	11	c1206-100n c1206-100n	100n 100n	110%	25V 25V	capacitor	C4 C10
	1 -	101200-10011	110011	1702	1200	capacitor	10101