TECHNICAL , MAINTENANCE AND INSTALLATION MANUAL

TX50S FM TRANSMITTER

JUNE 2000

CTE international
Via Sevardi 7
42010 Mancasale (REGGIO E.)
ITALY

OWNERS MANUAL
MAINTENANCE MANUAL
TX50S FM TRANSMITTER
Printed: 06-05-2000 Rev. A
Cod. MAN-TX50-06052000A

IN ACCORDING TO R\&TTE RULES NOTIFIED BODY : 0523

ITALY RESTRICTIONS : "L'uso dell'apparato è soggetto a concessione
Potenza RF 50 Watt
Canalizzazione 100 Khz (solo mod. TX50S)"

[^0]
CONTENTS

CHAPTER 1 - SAFETY INSTRUCTIONS
1.1 Introduction -6
CHAPTER 2 - ELECTRICAL SPECIFICATIONS
2.1 Frequency and power -8
2.2 Modulation capability - 8
2.3 Characteristics in MONO- - 8
2.4 Characteristics in STEREO -9
2.5 SCA characteristics -9
2.6 Readout on LCD display -9
2.7 Remote control -9
2.8 Power supply and temperature range 10
2.9 Mechanical specifications 10
2.10 Options 10
2.11 Standards satisfied 10
CHAPTER 3 - DESCRIPTION OF THE DEVICE
3.1 Main features 11
3.2 Available options 12
3.3 Block diagram 12
CHAPTER 4 - INSTALLATION
4.2 Unpacking and inspection 16
4.2 Installation 16
4.3 Power supply 16
4.4 Ground loops 17
4.5 Transmitter power up 17
4.6 Transmitter settings 17Connection diagram29
CHAPTER 5 - CIRCUITS DESCRIPTION
5.1 AUDIO-IN board 30
5.2 SINTD board 31
5.3 MBA board 31
5.4 AGC board 32
5.5 HSW board 33
5.6 40WN and RFDC boards 33
5.7 DLCD board 34
CHAPTER 6 - ADJUSTAMENTS
6.1 HSW module - power supply 35
6.2 40WN module- RF power module 36
6.3 RFDC module - directionl coupler 36
6.4 MBA module - mother board 37
CHAPTER 7 - MODULATION MEASUREMENTS
7.1 General informations 40
7.2 Modulation peak analysis measurements 41
7.3 Modulation power measurements 45
7.4 Considerations on the real measurements performed 46
CHAPTER 8 - REMOTE CONTROL
8.1 PC connection 49
8.2 COM1 49

CHAPTER 9 - INTERNAL AND REAR WIEW

9.1 Internal adjastments and settings 55
9.2 Rear connections 59
CHAPTER 10 - DIAGRAMS AND LAYOUTS
10.1 HSW board- power supply 63
10.2 AUDIO-IN board - audio inputs 67
10.3 DLCD board-display driver 73
10.4 MBA board - mother board 78
10.5 KEY board - key 85
10.6 SINTD board-VCO oscillator 88
10.7 DMPX board- stereocoder 94
10.8 AGC board- audio automatic gain control 97
10.9 CON board-MBA / RFDC connection- 101
10.10 40WN board- RF power module 104
10.11 RFDC board- directional coupler 107

SAFETY INSTRUCTIONS

1.1 Introduction

CTE has always managed to improve the safety standard if its transmitting and receiving equipment. All produced systems are tested in compliance with international EN60950 and EN60215 rules.
Obviously this is not sufficient to avoid any accident during the installation and the use of our equipment in compliance with EN60215 rule, the radio transmitters and the auxiliary equipment must be used by qualified technical staff only and CTE declines any responsibility for damages caused by an improper use or improper setting up performed by inexperienced staff, not qualified or operating with instruments or tools not in compliance with safety set of rules.

WARNING

CURRENT AND VOLTAGE WORKING IN THIS EQUIPMENT ARE DANGEROUS. THE STAFF MUST ALWAYS OBSERVE THE SAFETY RULES, INSTRUCTIONS AND NORMS CONTAINED HEREIN.

WARNING
THE INSTRUCTIONS CONTAINED IN THIS MANUAL MUST BE READ BEFORE SWITCHING ON OR SETTING THE TRANSMITTER

WARNING

ANY TRANSMITTER SERVICING, REPAIRING OR CHECKING OPERATION REQUIRING THE OPENING OF THE TOP OR BOTTOM COVER, MUST BE PERFORMED AFTER THE MAINS SUPPLY DISCONNECTION WITHOUT REMOVING THE EARTH CONNECTION WHICH THE EFFICIENCY MUST BE VERIFIED: THE CABLE MUST BE IN GOOD CONDITIONS AND WELL CONNECTED.

WARNING

STAFF OPERATING UPON THE TRANSMITTER SYSTEM MUST NOT BE TIRED: AFTER HEAVY WORKS OR CARRYING HEAVY MACHINES BY HAND, IT IS NECESSARY TO RESPECT A PERIOD OF REST BEFORE WORKING WITH SYSTEMS WHICH COULD HAVE DANGEROUS ELECTRIC VOLTAGE IF THEY ARE NOT DISCONNECTED.

WARNING

> SEVERAL SYMBOLS, INSIDE THE TYPICAL TRIANGLE SHOWING DANGER, HAVE BEEN PRINTED ON SEVERAL TRANSMITTER PARTS. ATTENTION SHOULD BE PAID, BECAUSE THERE COULD BE
> THE DANGER DUE TO HOT SURFACES, ELECTRIC VOLTAGE HIGHER THAN 50VOLT OR OTHER SPECIFIED DANGERS.

Certain devices (for example the RF final circuits mosfets) contain Beryllium Oxide BeO ; these components must not be broken, crashed or heated. This oxide passes through the common systems of filtering, including the respiratory apparatus. The prolonged inhalation at high degrees causes poisoning with respiratory apparatus paralysis, till death.

WARNING

ALL THE MODULES CONTAINING BeO ARE MARKED WITH THE TRIANGULAR WARNING SYMBOL INDICATING THE NOTICE:

WARNING! TOXIC HAZARD
 THESE DEVICES CONTAIN BERYLLIUM OXIDE OBSERVE SAFETY INSTRUCTIONS !

The staff in charge, besides being technically qualified, must have a practice of the first aid in case of emergency or accident (reanimation, heart massage, mouth to mouth respiration, etc.).
Before going on with the operations to be performed, it is necessary to know the position of the general electric switch and the one of the extinguishers, which are to be used very quickly if necessary.

TX50S FM BROADCASTING TRANSMITTER

ELECTRICAL

SPECIFICATION

2.1 FREQUENCY - POWER

2.2 MODULATION CAPABILITY

2.3 CHARACTERISTICS IN MONO

Audio frequency response (30 Hz to 15 KHz) ---0.15dB

Signal to noise ratio -->85dB

2.4 CHARACTERISTICS IN STEREO

Signal inputs Left or Right
Input impedance- 600Ω (balanced) or $10 \mathrm{k} \Omega$
Unbalance rejection $>40 \mathrm{~dB}$
Input level- 6 to +12 dBm
Pre-emphasis 75 or $50 \mu \mathrm{~s}$
Audio frequency response (30 Hz to 15 KHz) $<0.15 \mathrm{~dB}$
Audio frequency response (19 KHz to 100 KHz) $<40 \mathrm{~dB}$
cross-talk between left and right channel $>50 \mathrm{~dB}$
Distortion at frequency deviation of 75 KHz $<0.03 \%$
Distortion at frequency deviation of 100 KHz $<0.03 \%$
Signal to noise referred at deviation of $75 \mathrm{KHz}-$ $>80 \mathrm{~dB}$
Suppression of 38 KHz $>80 \mathrm{~dB}$
Spurious suppression outside band- .in according to ETS 300-384
Pilot reference for RDS encoder (19 Khz out) 1 Vpp
2.5 SCA CHARACTERISTICS
Input (SCA1, SCA2) BNC unbalanced
Input impedance- $10 \mathrm{~K} \Omega$
Frequency response (50 KHz to 100 KHz) $<0.1 \mathrm{~dB}$
Distortion to 10%
2.6 READOUT ON LCD DISPLAY (40x4 character)
Forward power resolution 0.1W
Reverse power resolution 0.1W
Modulation resolution 1 KHz
Line voltage resolution 1V
Power amplifier voltage resolution 1V
Power amplifier current resolution 0.1 A
Heatsink temperature resolution $-1^{\circ} \mathrm{C}$
2.7 REMOTE CONTROL
COM1 (front panel) RS232
COM2 (rear panel) RS232
COM3 (rear panel) RS485
Personal computer software National Instruments LAB-VIEW ${ }^{\circledR}$Transmission protocolAES-EBU SP 490

2.8 POWER SUPPLY AND TEMPERATURE RANGE

2.10 OPTIONS

2.11 STANDARDS COMPLYS (R\&TTE)

Electrical characteristics-0523

GENERAL DESCRIPTION

3.1 Main features

TX50S is a FM band broadcasting transmitter with modern conceiving and technology, which by a simple design produces an output radio signal with high characteristics of quality, reliability and security.

The simple manufacturing obtained with a hi integration of functions, has allowed to create a machine with few controls and connections. Most printed circuits are multilayer with a surface mounting technology component assembling. The eventual repairing can be done by simply changing the fault involved board, without searching the defective component.

One of the most important characteristics is done by the high quality of the frequency modulation and the high signal-to-noise ratio; moreover, the modulation is typically constant within 0.1 dB throughout the whole FM band $(88-108 \mathrm{MHz})$. A proper peak detector allows to perform both traditional modulation measurements (usual bar-graph with peak), and modulation and power modulation ones with long observation periods (even with many hours or days) according to the latest international regulations, which properly cared to fix a limit scientifically measurable to the peak and modulation power (CEPT 54-01).

An particular audio circuit can control the input audio level with a $\pm 6 \mathrm{~dB}$ dynamics referred to the nominal value: this can be extremely useful when the audio signal level is not fixed or when this one can be subject to fluctuations (usually very slow) due to thermal driftsbad systems maintenance, possible damages along radio link paths etc. A proper board can be inserted to obtain this function and a proper microprocessor follows constantly the modulation value correcting through proper algorithms, implemented in its memory, the value of the modulator gain, keeping this way the modulation very close to the maximum allowed value. The corrections take place at very long periods of time; the board does not perform the audio compressing-limiting functions, but just compensates possible drifts occurring on the systems carrying the audio channel before entering in the FM transmitter. No measurable phase or amplitude distortion is introduced in the modulation when the automatic gain control circuit is enabled. In addition an alarm which switches the power off in case of modulation absence can be inserted since the unmodulated carrier transmission is forbidden in many countries, with no chance to identify the radio.

The transmitter can be set like a modern signals generator so the output power is completely managed by a device which guarantees that the values of forward power, reflected power, maximum output power versus the temperature and loading conditions, are always the ones set or the ones allowed by maximum limits. A directional wide band coupler with remarkable directivity and large on board memory allows to obtain a power accuracy worthy of a good measurement instrument.

All parameters (frequency, levels, mono/stereo, pre-emphasis, power) can be set by the keyboard and stored in E PROM in order to be kept even without electric supply. A great number of events can be stored: each alarm is distinguished by a starting and an ending alarm date. The
controlled parameters are: modulation absence, heatsink temperature, mains supply voltage, RF power final stage voltage and current, main oscillator fault.

Besides the keyboard, the transmitter can be remotely controlled in different ways. A personal computer can be connected as monitor to the DB9 socket placed on the front panel and by a special program, to be load easily on the PC, all the transmitter parameters can be set and seen. Furthermore it's possible to perform all the modulation analysis provided by the CEPT 54-01 regulations and create the related graphics which can be stored as a file in the PC.

A second RS232 port placed in the transmitter rear part can be connected to the power amplifier connected in series to the exciter, thus allowing the power data display on the same PC connected to the front RS232.

A third RS485 port placed in the rear part can be connected to a MODEM which is connected to the phone line thus assuring the transmitter telecontrol, remotely or from the studio.

The same RS485 port can be used for the connection N+1 of more transmitters (max 32). In this case a transmitter acts as a "joker", so it replaces the faulty equipment, automatically adapting to all its parameters. Each transmitter is also provided with an output port (IN/OUT) suitable to drive the antenna cable multiplexer and the one for the input audio signals switching.

3.2 Available options

a) STEREO ENCODER : additional board allowing the internal encoding of the stereophonic signal
b) AGC : additional board allowing a frequency modulation control
c1) REMOTE CONTROL : software for the PC connection
c2) $\mathrm{N}+1$ system : software to obtain $\mathrm{N}+1$ system
Model TX50S-S have 10 Khz frequency steps

3.3 Block diagram

The transmitter can be modulated by five different audio signal.
The first two ones are made by monophonic left and right channels, which can be balanced or unbalanced. The input dynamic goes from -6 to +12 dBm with an input impedance which can be high or low. On these channels either the European or American pre-emphasis value can be inserted. A low pass filter on each of the two inputs assures a good attenuation of audio frequencies higher than 15 KHz which could interfere, in case of stereophonic transmission, with higher band and with la subcarrier of the Multiplex signal; the out-of-band attenuation of the filter is not excessive in order not to increase then phase distortion (group delay) of the in band audio signal: $60-70 \mathrm{~dB}$ of attenuation, even with 0.1 dB of amplitude linearity up to 15 KHz , unavoidably creates a distortion on the analogue signal that an experienced ear can perceive. Right or left signals can be combined to generate monophonic transmission (should you only have one of the two signals, it
will be necessary to externally put in parallel the two inputs); in case of stereophonic transmission, the two channels are fed inside the stereo code board.

The mono signal or the stereo one, thus obtained, is combined with the other three possible input audio signals: an external Multiplex signal and two SCA signals, one of which can be the RDS one, which can be synchronized with a 19 KHz one connected on the IN/OUT rear connector.

The composite signal can enter the AGC board, which has the task to check the its amplitude and consequently to keep the modulation at the correct value, or it can follow its path and enter into the frequency modulator after having passed through a limiter circuit (CLIPPER). This circuit must became active just in cases of faults of previous circuits or in case of mistake in the setting of the low frequency input nominal levels; this is to avoid to interfere with the adjacent channels. For not activating this "fuse", which produces remarkable distortions on the modulation, it is necessary to take all proper cautions, that is the use of external compressor-limiters or by inserting the internal AGC circuit which protects a lot against damages and drifts.

The oscillator, directly modulated by the composite signal, covers the whole FM band and it's synthesized in steps of 10 KHz . The reference frequency is obtained by a 10 MHz crystal kept at constant temperature of $55^{\circ} \mathrm{C}$, whilst the output frequency is set by the main microcontroller. The oscillator phase noise is very good and it is in compliance with ETSI 300-384 regulations (<145 dBc for a shifting of 1 MHz from the carrier). The modulation linearity is typically contained within 0.1 dB without complicated corrections.

The RF final power circuit is wide band and it provides 50 W RF output controlled with high accuracy; directional coupler has a directivity higher than 25 dB on the whole band and an error which is lower than 0.2 dB , it is also compensated in temperature and totally shielded.

The power supply is of a switching type and it gives the four essential voltages, all obtained with this technique. A small voltage measurement transformer allows to check the effective value of mains supply voltage with accuracy and to interrupt the output power in case this value exits from the normal operating window of the transmitter (15% respect the nominal value of $115 \mathrm{~V}_{\mathrm{AC}}$ or of $230 \mathrm{~V}_{\mathrm{AC}}$). The mechanical position of the power supply and the final circuits of RF power allow to obtain a vent flu just for cooling of the involved circuits, obtaining this way a really remarkable efficiency of that function. In normal running conditions, when the transmitter is working in a full power at environmental temperature, the radiator temperature is lower than $35^{\circ} \mathrm{C}$, whereas the other circuits temperature does not exceed $30^{\circ} \mathrm{C}$. No components are involved with the air flow, so it isn't requested a filter on the aspiration fan, which replacing is rather simple. The power supply is completely shielded both for internal circuits and for its unavoidable emissions toward the outside.

Data displaying and setting is obtained by a board which is placed directly on the front panel containing a microprocessor, memory, keyboard, LCD display. The displaying area is wide so allowing to display and set needed data in a very easy way, thus making the transmitter-user technician interaction extremely user friendly.

It's possible to protect the transmitter input and output parameter settings with a password, while all measurements can be done by whoever without interfering on its operation.

Two communication RS232 ports and a RS485 port can make possible the communication between the transmitter and a PC, with the power amplifier and the driver exciter, or with a modem connected with the telephone line.

Maintenance or repairing of damages do not require the soldering use for the replacement of the parts to be changed; only six flat cables link all different boards.

TX50S BLOCK DIAGRAM

Pag. 15

INSTALLATION

4.1 Unpacking and inspection

Immediately, after the transmitter has been delivered, please carefully check the package to verify possible damages caused by shipment. Should be found some damages, please immediately contact the CTE dealer.

It is recommended to keep the original package for a future shipment die to, for instance, repairing or setting. A return with a package which is different from the original one will make the warranty rights lost.

4.2 Installation

The transmitter TX50S is composed of a 19 inches width rack which takes 2 units in height in a vertical rack mount.

It is recommended to use 4 fixing plastic washers in order to avoid damages to the front panel varnishing. We remind to carefully connect the earth both to the transmitter and to the rack mountnever disconnect it without having switched the supply voltage off by the mains switch.

Design has considered the new rules concerning the electromagnetic compatibility so there aren't problems to locate systems CE marked nearby.

4.3 Power supply

AC power supply at $50 / 60 \mathrm{~Hz}$ can be at $115 V_{\mathrm{AC}}$ or $230 \mathrm{~V}_{\mathrm{AC}}$.
The switching on control is placed for security reasons on the rear panel with the protection fuse, which must have the value 1.6 A for the higher voltage and 3.15 A for the lower one and it must be a delayed type. To change the value of the mains supply voltage, the small PCB placed inside the mains supply socket must be switched, taking care to place it in the position allowing to read of the needed voltage.

BEFORE SWITCHING THE TRANSMITTER ON, MAKE SURE

THAT THE POWER SUPPLY IS CORRECT AND CONNECT

THE RIGHT LOAD OR ANTENNA!

4.4 Ground loops

Sometimes connecting various ground sockets having different potentials may produce some unwanted loops, which may create hum in the modulation: in this case it is essential to firstly identify the origin of these currents, which normally spring from the antenna ground, mains supply ground or from the input low frequency signals ground.

If the inconvenience can not be removed, the balanced input of the two channels LEFT and RIGHT can be used, thus obtaining common mode noise rejection of 40 dB approximately.

All the inputs and outputs are protected by diodes against the electrostatic discharges and they are provided with filters against the RF noise.

4.5 Transmitter power up

After making sure about the proper earth socket connection, correct power supply and connection of the load on the antenna output, the equipment can be switched on.

If there is the first switching on, problems of wrong setting can't occur since the transmitter contains some standard values and the output power will be set to 0.5 W , in order to avoid any problem of interference or driving for possible following amplifiers. The set values will be displayed and changed according to your need before the RF power is emitted from the transmitter. The equipment is provided with a memory which holds all settings even when the electric supply is off, however it is recommended to set the power at 0.5 W when uninstalling the transmitter itself to avoid any problem in case of a new setting up.

REMEMBER THE PASSWORD !

To enter the setting menu, knowing the password is mandatory. It's a four digits number written on the transmitter delivery document. Should it be forgotten, it will be possible to perform the set up by setting the Z 2 jumper placed on the board DLCD (vertical board placed behind the rear panel) on the soldering side; the jumper is easy to identify through the close capture: PASSWORD ON/OFF.

In this case, this operation must be performed with the equipment switched off and it requires also the opening of the top cover which, at ended operation, must be closed again with all its screws; it is essential to use a proper cross point screwdriver.

4.6 Transmitter settings

4.6.1 At the switching on, the display will glow giving for few seconds the following screen shot

4.6.2 Afterwards another page will appear for few seconds allowing to change the mains supply voltage value; the value setting operation to 115 or $230 \mathrm{~V}_{\mathrm{AC}}$ by switching the network socket, and eventually changing the fuse value, allows the transmitter to operate correctly, but it doesn't allow the microprocessor controlling the equipment to know the mains supply voltage value. For this reason, if the value appearing on the said screen shot doesn't match with the one set on the rear voltage changer, it will be necessary to type ENTER to update to the changing; if the set value unmatched with the one read on the mains supply switch, the transmitter will turn to MAINS SUPPLY VOLTAGE ALARM, for example reading a $220 \mathrm{~V}_{\mathrm{AC}}$ voltage when it is set for a $115 \mathrm{~V}_{\mathrm{AC}}$ value: in this case the alarm is obviously given since the read voltage exceeds 15% of the nominal value $(220 \mathrm{~V}$ is almost the double of 115 V$)$.

If the line voltage appearing on the display matches with the one reading on the mains supply switch, it isn't necessary to type anything. On the opposite ENTER is required.

On the screenshot the options contained in the transmitter and the hour of the last switching on will also appear and it will correspond to the current hour and date. If one finds out a discrepancy between the hour given and the current one, it will be necessary to correct the error in the clock setting.

If this screenshot is accessed from another menu, the indication LAST POWER ON will show the last switching on date and it will be able to give the operator some indications about accidental switching off.
4.6.3 If all the indications are right, after a while the first page will be shown; which with the second one will contain all the most important measurements of the transmitter:

(——

The display is explanatory enough
FREQUENCY is the output frequency set in MHz
FORW. PW is the forward output RF power
REFL. PW is the input reflected power on the RF connector
LOCK ON shows that main oscillator is locked the programmed frequency
MODULATION
TEMPERATURE
shows the modulation value of the COMPOSITE signal
shows the radiator temperature value of the RF power final mosfet
LINE VOLTAGE shows the mains supply voltage
Moreover, in the lower part of the display, at the middle there is the indication of the number of alarms eventually set in the memory which have taken place after the last clearing of the memory.
These ones will be displayed automatically by a continuous enter of
PAGE UP.
If one enters PAGE DOWN in this screen shot, the previous one returns and it will be possible to see once again the date of the last switching on or to change the mains supply voltage value.

If an alarm is on, always in the same position of the display, the intermitting message ALARM will be pointed out.
4.6.4 By entering PAGE UP, it's possible to see the second screen shot of the most important measures:

AUDIO LEVEL

PREEMPH. 75

AUDIO
is the nominal audio signal set on the setting window placed on the rear panel: if this value doesn't match to the needed one, it's possible to choose $0,4.1,6 \mathrm{dBm}$ or, by placing the jumper on var, it's possible to choose a value between -6 and +12 dBm .
is the chosen pre emphasis value, always on the rear window, also the value $50 \mu \mathrm{~s}$ can be selected; the inclusion or the disabling may be performed by the keyboard in a following screen shot.
shows whether the transmitter is set to mono or stereo.

CARRIER EN
PA VOLTAGE
PA CURRENT
MAX PW SET

RFL PW SET
shows if the output power is enabled either by a keyboard command or by an external command through the IN/OUT rear connector.
is the supply voltage of the RF power final mosfet.
is the voltage drained by the mosfet final power.
is the maximum power value which can be programmed by the keyboard in the screen shot Forward PW adj (1-50W) to avoid accidental over drivings of the following amplifiers.
is the maximum allowed output reflected power. Should this limit be reached, the direct power will be reduced to keep constant the limit value of the reflected power
4.6.5 By entering again PAGE UP, eventual alarms present in the memory will be displayed:

```
pA-------- alarm number 1 -------- TGT7
ALARM FOR MUDULATIUN ABSENCE 〈T`2min)
05/27/00 09:46
mm/dd/yy hh imm press page up>
```

They are stored in a chronological order ordered by number, type and date.
Besides the real alarm, also the complementary event is stored (return to normality), in order to know the alarm period time:

```
pA-------- alarm number 1 --------- TपT7
MODULATIUN RETURNED TI NDRMAL VALUE
05/27/00 09 :58
mm/dd/yy hh imm press page up>
```

By entering PAGE UP, the next alarm is displayed, or, if in the last screen shot of main measures there was not any alarm, it will be displayed the screen shot for the PASSWORD request to access the measures. If inside the transmitter the Z2 jumper placed on the DLCD board (in the rear of the front display panel board) is placed to OFF, this request is skipped, so it's possible to directly set the transmitter.
4.6.6 The screen shot for the password request is the following:

p2---1 enter your password for $T X$ setting PASSWORD : 0000

To go on, it is essential entering the four numbers which can be known by reading the transmitter delivery document. If the password is unknown or it is too difficult to open the top cover by unscrewing the 20 locking screws, it is just possible to surf among the previous screen shots which give all the information about the transmitter.
4.6.7 By entering the right combination and then ENTER, the first setting of the transmitter is accessed:

```
p4- max output forward power setting -
    GLD POWER : 40 Watt
    NEW PDWER : 50 Watt
press data and enter only for new power
```

In this screen shot i the maximum value of the direct power setting can be changed by the keyboard with the limit of 50 W , this to avoid to drive an eventual following amplifier, which could bear an input maximum power of few Watts, with an excessive power and harmful consequences; therefore in this screen shot output power can't be adjusted, but a remedy is taken to solve a quite common error in the output power adjustment of the exciter-amplifier systems.

The change and entry of new data may be performed by pressing the horizontal and vertical cursors and the ENTER button.
4.6.8 Entering instead PAGE UP, the following screen shot is accessed:

Mag. 21

In this screen shot, like in the previous one, it's possible to set the higher limit of the allowed maximum reflected power. If the set limit tends to be exceeded, for a bad antenna operation or a bad load connected to the RF connector, the direct power is reduced proportionally so that this limit wont be exceeded, thus protecting the RF power final mosfet. Usually the reflected power limit is set to a value equal to 10% of the set direct power. Therefore, if the output power is adjusted at 50 W , the reflected one can be 5 W .
The higher limit of this parameter is 10 W and the resolution is 0.1 W .
4.6.9 By entering PAGE UP, the following screen shot is accessed:

```
p6---- forward power adjustament -----
FIRW PW meas: 10.2 W REF PW meas:: 0.1W
NEW F.PW adj: 10.2 W CARRIER EN: पN
press data and enter only for new power
```

In this screen shot the output power can be set by means of NEW F. PW adj.. The resolution is 0.1 W and the new direct power data are entered by the horizontal and vertical cursors and ENTER. After the new power has been set, it will be possible to read the power measurement really present on the antenna connector (forward and reflected), which may be slightly different from the set one due to the control circuit error or it may be very different in case of standing waves on the output circuit which forces the power control circuits to reduce the power in order not to exceed the reflected power limits.

By means of the horizontal cursor, the power enable can be set, this software command doesn't operate if the transmitter is externally disabled through a CARRIER EN control placed on the rear IN / OUT connector.

Each output power variation command is softly performed with the achievement of the final value in 3 seconds approximately.
4.6.10 By entering PAGE UP the following screen shot is accessed :

In this screen shot the output frequency can be set by the usual cursors with a resolution of 10 KHz . On the display the current frequency and the new value appear.

After the ENTER key has been pressed for the new value, the output power is disabled for a few seconds, allowing the oscillator to exactly reach the new value.
4.6.11 By entering PAGE UP, the following screen shot is accessed:

$$
\begin{aligned}
& \text { p8--output fine frequency adjustament - } \\
& \text { aLD VALUE: } 100 \\
& \text { number must be }>0 \text { and }\langle 255 \\
& \text { press data and enter only for new value }
\end{aligned}
$$

All the rules concerning the radio transmitters in FM band include some limits of accuracy and stability of the output frequency. These limits usually depend on parameters of internal crystal reference, which are at the same time connected firstly to the temperature and ageing of the crystal itself. For this reason the crystal is heated at a constant temperature of $55^{\circ} \mathrm{C}$, which guarantees a considerable thermal stability, however a frequency correction due to ageing is easily implemented just manually.

The present screen shot allows a very fine adjustment of the frequency value assigned to the radio station without the need to open the transmitter. By entering a correction factor between 0 and 255, the transmitter frequency can be corrected with a 20 Hz step only; this operation can be performed during the normal periodical check of the transmitter or, as it is shown below, through a remote telecontrol.

By entering the new correction value, it's possible to reach a 2 KHz offset in comparison to the central value.
4.6.12 PAGE UP for a new screen shot:

In this case it's possible to insert the pre-emphasis or to set the transmitter from mono to stereo and vice versa.

The pre-emphasis value (50 or $75 \mu \mathrm{~s}$) is switched by a jumper placed on the rear window of the rack. The pre-emphasis operates on the LEFT and RIGHT channels only.

By choosing the STEREO option, the LEFT and RIGHT channels are encoded with the stereo subcarrier addition, from which it's possible to get a synchronism in the IN/OUT rear connector (1 Vpp sine wave).

On the opposite, if an external stereophonic source is already available, the LEFT and RIGHT inputs must be kept free by using the MPX input (rear BNC); in this case the transmitter must be set to MONO even if the transmission is STEREOPHONIC.

When the transmission is monophonic, if one enters by the two LEFT and RIGHT channels, the transmitter is modulated at the nominal value; if only one channel is available, this one must enter at the same time both in the LEFT and RIGHT channel inputs, so they must be put in parallel otherwise the deviation would be half of the nominal one.
4.6.13 By entering PAGE UP the following screen shot appears :

Here it's possible to see the frequency deviation value and the input signal values.
When the composite signal is chosen (addition of all the modulating signals), the numerical and visual indication appearing is the frequency modulation expressed in KHz while on the LEFT, RIGHT MPX signals, the level is measured and displayed as value 100 when it matches the nominal value.

The indication states the peak and the chosen measurement will be flashing displayed on the LCD.
By modulating the transmitter through the nominal level input signals and with fixed tone (i.e.. 400 Hz), the deviation must not exceed 75 KHz (COMP) and the input signal level must not exceed 100%. But if a music signal is available at the input, indication can also exceed this value and the exact rules for this check will be seen in the screen shot 11 .

Besides, if the automatic audio gain control is off, the 75 KHz deviation value is equivalent to 100% of the input signal values. On the opposite, if the AGC is on 75 KHz deviation can be obtained by an input signal which is variable, as level, from half to the double of the nominal value.
4.6.14 By entering PAGE UP the following screen shot will appear:

$$
\begin{aligned}
& \text { p11----Automatic Audio Gain Control ----- } \\
& \text { Range: +/- dB referred to nominal value } \\
& \text { GAIN CONTROL: } \mathrm{GN} \text { Modabsence ALARM: } \mathrm{ZN} \\
& \text { press data and enter only for change }
\end{aligned}
$$

In this screen shot it's possible to enter, if installed, the option of the modulation level automatic control due to the audio signals: when the AGC is on, the maximum modulation value is checked at 75 KHz varying the audio amplifiers gain; the dynamic is $\pm 6 \mathrm{~dB}$ and this is useful when the input signal level is not sure.

For a wider explanation about the AGC operating see paragraph 4.4.
There is also a control on the modulation presence, since everywhere it isn't allowed to transmit by unmodulated carrier; after two minutes of modulation absence an alarm can be given and the power can be disabled. When the modulation returns to the normal value, the alarm stops and the usual operation is restored; in case of stereophonic transmission, the threshold for the modulation absence is 10 KHz , because of the subcarrier value.
4.6.15 By entering PAGE UP the following screen shot appear :

```
p12 Measuring maximum FM deviation
of transmitter emission in according to
REC-CEPT/ERC 54-01E (1998) - [ ANNEX 2 ]
page up to skip> enter to continue>
```


modulation analysis over 60 sec GVERMIDUL. PEAK FACTOR K press page up> PZWER MDDULATIUN press enter>

p14---------CEPT/ERC 54-01

0., 20, , 40, , 60, , 80, , 100, .120. khz over modulation factor K (must be<0.2) press ENTER to measurement start>
p14--------CEPT/ERC 54-01
0., 20.,.40, ,60, , 80, , 100, .120, khz WAIT 60 sec FIR MEASUREMENT RESULT $\mathrm{K}=$?
p14---------CEPT/ERC 54-01
0., 20. . .40, . 60, . 80, . 100, .120. khz $K=2.7$
page up/down to exit or continue
p14---------CEPT/ERC 54-01
0., 20, . 40, . 60, . 80, , 100, .120. khz modulation power PM (must be <0) press ENTER to measurement start>

$$
\begin{aligned}
& \text { p14---------CEPT/ERC 54-01 --------------- } \\
& \text { 0., 20, , 40, , 60, , 80, , 100, .120, khz } \\
& \text { WAIT } 60 \mathrm{sec} \text { FoR MEASUREMENT RESULT } \\
& \text { PM = ? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { p14--------CEPT/ERC 54-01 } \\
& \text { 0., 20, , 40, , 60, , 80, , 100, .120. khz } \\
& P M=-1,6 \quad d B \\
& \text { page up/down to exit or continue }
\end{aligned}
$$

The previous eight screen shots, if selected, allow to perform the measurement of the modulation analysis according to the CEPT 54-01rule. For an exhaustive explanation of this new measurement method see chapter 7 .

Briefly, it can be said that a music signal can exceed the limit threshold of 75 kHhz , provided that this exceeding is contained in a certain percentage. The rules concerning this topic are contained in the above mentioned regulation and in the IEC-244. Thus it's possible to quantify the excess of over modulation peak and it's possible to show, as in the appendix, that the numerical factor K fixing this limit can not be greater than 0.2 . Modulation power on the opposite can not be higher than the one relating to a sine signal deviating 19 KHz (reference $=0 \mathrm{~dB}$)

The observation period, for the measurement and the calculation of these factors, is 1 minute, after that the result will be displayed.

For the calculation of the K over modulation peak factor, 1200 samplings are performed during a 60 sec measurement, and the value factor is obviously 0 if no peaks exceed 75 KHz . The value 0.2 is acceptable as a higher over modulation limit; the value 0.5 shows that the modulation must be reduced of 1 dB at least, values higher than K indicates strong over modulations.

For the modulation power, over 10 millions of samplings are performed during the minute of examination and power integral defined in the measurement segment is calculated; the result is compared to the one equivalent to a sine signal which deviates 19 KHz ; the result of the comparison is expressed in dB and it must not be higher than 0 , in order to make the measurement complying with the rule. This limit is debatable and, as it has been described in chapter 7, normally in on-field measurements the values of $2,3 \mathrm{~dB}$ are found which, after all, we estimate don't cause over modulations.

Since the peak modulation values are random (they depend, besides on the set levels, on the type of musical pieces as well), K or PM values can remarkably vary during the day relating to the type of the transmitted program; it's useful to do many measurements at different times by trying to
measure dance-music rather than spoken. By using the Personal-Computer interfaced with COM1 placed on the front panel it's possible to perform this measurement with many hours of observation periods as it will further be seen.
4.6.16 By entering PAGE UP the following screen shot is accessed:

$$
\begin{gathered}
\text { p16---------- clock setting ----------- } \\
\text { GLD ---- date 06/03/00 time 08:41:34 } \\
\text { NEW ---- date 06/03/00 time 00:00 } \\
\text { press data and enter for change> }
\end{gathered}
$$

Here the transmitter internal clock which is used for the memorisation of all the events can be set. At the top the current date appears, the new date at the bottom; in left to right order month, day, year, hours, minutes, seconds appear.
4.6.17.1 By entering PAGE UP the next page is accessed:

$$
\begin{aligned}
& \text { pGA--------- alarms erase }-----------------1 \\
& \text { IF YOU WANT ERASE ALARMS } \\
& \text { press ENTER tree times } \\
&
\end{aligned}
$$

By pressing three times the ENTER button, all the alarms in the memory are erased.
By entering PAGE UP, the start position is restored.

CONNECTION DIAGRAM

Pag. 29

CIRCUITS DESCRIPTION

5.1 AUDIO-IN board

The AUDIO-IN board has the task to interface the input audio signals with the modulator. Level adjustments are performed on the m, as well as pre-emphasis insertion and input impedance selection. The outputs, going through a flat-cable to the mother board, are raised to a high level and made balanced in order not to be interfered with the transformer flow dispersion.

The LEFT and RIGHT signals available on the connectors placed on the rear panel enter, after a first RF noise filter, respectively into U6 and U1. By the U11 switch and the Z1 jumper accessible at the back, the input impedance can be selected (600Ω or $10 \mathrm{k} \Omega$). A similar function is performed by the jumpers $\mathrm{Z} 3, \mathrm{Z4}, \mathrm{Z5}, \mathrm{Z} 6$, which allow to select the input nominal value level; on the two channels MONO examined, the switches U13 and U12 change the gain by switching three resistances or a trimmer to put the input level to $0,4.1,6 \mathrm{dBm}$ or by RT3 and RT4 to a level between -6 and +12 dBm . The signal is then the pre-emphatized; the value 50μ s or $75 \mu \mathrm{~s}$ is chosen by the jumper Z2, while the possible inserting is controlled by the front keyboard. Through U3 and U4 the LEFT and RIGHT channels output is made differential.

The MULTIPLEX external signal path is simpler. On it, it's only adjusted the level at the nominal value by U16, still controlled by $\mathrm{Z} 3, \mathrm{Z4}, \mathrm{Z} 5, \mathrm{Z} 6$. U9 adds up the MPX signal with the two SCA signals and generates the balanced output signal.

Normally, on the SCA signals it's difficult to establish an input nominal level since their contribution to the frequency deviation is variable and depends both on the number of subcarriers between 53 and 100 KHz and on the difference about MONO or STEREO transmission. In any case, the total deviation of all the subcarriers ($19 \mathrm{KHz}, \mathrm{SCA} 1, \mathrm{SCA} 2$) must not exceed 10% of the maximum nominal deviation, which in most cases is $\pm 75 \mathrm{KHz}$. If the transmitter is monophonic and only the RDS signal placed in one of the two SCA inputs is present, the deviation level of the transmitted data can reach $\pm 7,5 \mathrm{KHz}$; whereas if the transmitter is stereophonic and besides the RDS signal also a lower quality audio channel on a subcarrier is present, for example at 76 KHz , the total of each subcarrier deviations can't exceed $\pm 7,5 \mathrm{KHz}$. The stereo driving carrier will deviate $\pm 4 \mathrm{KHz}$, the RDS signal and the other audio channel will have to deviate, for example, $\pm 1,75 \mathrm{KHz}$.
For this reason, it has been preferred to make the SCA channel levels independent between the nominal input one of the audio channels. The adjustment is obtained by RT1 and RT2 trimmers always placed on the rear panel.

All the set levels are showed in the display and the choice to adopt a parameters manual setting related to the input signals level has been preferred to an easier keyboard setting to avoid a non standard levels setting which makes the servicing or the transmitter replacement problematical. The audio signal level errors must not be cleared on the transmitter, but at a former stage. Normally, every broadcasting station fixes a nominal level for all signals and all the adopted equipment must respect this sole value. As higher is this value, as higher will be the noise immunity, and the signalnoise ratio as well.

5.2 SINTD board

SINTD board is placed at the rack centre, directly connected to the mother board from which it can be quickly removed. It has the function of frequency synthesized oscillator (88108 MHz) modulated by the audio composite signal.

The FET Q1 is the core of the board and oscillates at the set and controlled frequency. All the techniques to obtain high performances in terms of noise and modulation linearity have been adopted. Moreover for a decade EL.CA already have been adopting these circuits solutions (oscillators with coaxial line) for frequencies even till 3 GHz for FM transmitters and audio links. Eight varicaps DV1-DV8 modulate the oscillator being driven by the Q2 low output impedance which reduces Nyquist this way wide band noise produced by the variable capacity diodes; at 1 MHz between the carrier, the SSB noise is already better than -145 dBc , in accordance to ETS-ETSI-300-384. The Q3 transistor reduces the flicker-noise due to the power supply; the D3-D4 series doesn't allow the Q1 saturation, while Q4 and Q5 uncouple the oscillator from the following amplification stages. The U14 output has a power of 10 dBm .

The Q6 transistor leads the oscillator signal into the prescaler of the PLL circuit (U4); this integrated circuit performs all the frequency synthesis functions: it's set by U1 ports through the main microprocessor placed on the DLCD board. The reference frequency $(10 \mathrm{MHz})$ is produced by Q7; the crystal is kept at a constant temperature by a feedback obtained through U5 and U6; the value $55^{\circ} \mathrm{C}$ is $5^{\circ} \mathrm{C}$ higher than the maximum operating temperature, so allowing to obtain a frequency stability lower than a part per million at the environmental working range $0-45^{\circ} \mathrm{C}$.

The error amplifier of the phase comparator internal to the PLL chip is composed by U13 and U2 and it has a closed loop cut frequency lower than one Hertz, so that the lowest frequencies of the modulating stereophonic signal can maintain a separation higher than 50 dB between the two channels. The modulation, coming from the mother board and from the AUDIO-IN board, is simply added to the VCO error voltage, no linearization has been provided to make the deviation constant versus the output frequency; typically the deviation error is contained within $0,1 \mathrm{~dB}$ all over 20 MHz band.

The oscillator has been carefully shielded to avoid that close transmitters could induce spurious frequencies on the output.

5.3 MBA board

The central board has the task to distribute the power supplies and the input and output signals; moreover, the audio filters and the peak-to-peak detector for the different modulation level measurements are implemented in it.

Both the left and the right channel signals coming from the AUDIO-IN board through the J 7 connector, pass through an elliptic filter made of precision active components; the bandwidth at 0.1 dB is 15 KHz and the attenuation over 19 KHz is higher than 40 dB ; no adjustment is provided, the resistances have a precision of 0.1% and the capacitors are selected and high quality type. U3, U4, U5 and U6 make the left channel filter, the right one is symmetrical.

Another elliptic filter of an lower order clean the MULTIPLEX signal by removing the surious signals created by the switching over 600 KHz ; however this is a typical L-C placed between the two sections of U1. The two further stages formed of U2 make a phase equalizer (RT2) and a amplitude equalizer (RT3) to compensate the DMPX board errors and the previous filter.

The operational amplifier U12 generates the composite signal by adding all the signals; the output of the first section can either enter in the automatic gain control optional board or, in its absence, it enters the U12 second section which acts as a clipper using the saturation and the interdiction of the operational amplifier output circuit. The threshold value is regulated by RT6, this output of this stage enters directly into the frequency modulator placed on the SINTD board.

The U17 switch selects the audio signal to be measured which the level is detected by a peak-topeak detector made by U13, U14, U15. Through the U18 switch, controlled by the DLCD board, the measurement can be of peak or envelope, in accordance to the peak measurements or modulation power.

A circuit made of U22 and U23 disables the output power in case of external command (CE) or synthesizer fault. This function is performed through software also and this circuit represents a security guarantee for such an important function.

5.4 AGC board

The task of this board is to guarantee the maximum allowed modulation where is not sure that the input audio signal has a fixed value. This option can be added to the transmitter at any time and, when it's present, the Z3 jumper placed on the MBA board must be set to ON. Its adjustment, when enabled, is 6 dB around the nominal value and it uses 32 gain variation steps of 0.3 dB each approx.

The operation is quite simple: a wide band amplifier (U6) has the gain which depends on the R2 ... - R33 resistive value; these are switched by U2, U3, U4 and U5, they are controlled at their time by the microcontroller U1. The AGCO output audio signal is detected by U7, U8 and U9 and the peak-to-peak value is measured by the microcontroller, which consequently decides which gain must be given to the amplifier.
The intervention time of the gain variations is not constant, but it's for the input signal value; the gain variation algorithm versus the time is complex in order not to distort the signal, anyhow it's possible to say that, when the signal has a level equal to half of the nominal one, in a couple of minutes approximately or little bit more it's restored to the nominal value. On the opposite, when it has a value which is the double of the set value, it takes just few seconds to reach the nominal value.

On the board it's possible to activate an alarm signal which takes place when the modulation is lower than 10 KHz for a period of time longer than two minutes (the level 10 KHz has been selected because is a little higher than the value due to the stereo subcarrier). When the modulation absence alarm is on, the output power is removed and the transmitter remains in stand-by until the modulation will be restored.

5.5 HSW board

This circuit provides all the needed voltages for the transmitter operation.
The voltage coming from the rectified output of the power transformer (48 V peak) is filtered by the capacitor group $\mathrm{C} 1-\ldots$ - C6 then it's reduced at the 28 Volt value by the switching regulator Q3 which is driven by U2 and U3. RT1 regulates the current limitation from 1A to 5A, while RT2 regulates the output voltage at 28 V . U1 and Q2 protect the circuit against accidental short circuits, by switching off the driver supply.
U1, operational amplifier with low offset, measures the current absorbed by the final through the shunt R40 (PAC output).

From the $+28 \mathrm{~V}_{\mathrm{DC}}$ voltage which supplies the final by three switching regulators in series, it's obtained $+15 \mathrm{~V}_{\mathrm{DC}}$ (U5), $-12 \mathrm{~V}_{\mathrm{DC}}$ (U7), $+5 \mathrm{~V}_{\mathrm{DC}}$ (U6). The first and the second voltage feed all the transmitter analogue circuits, whereas the third one feeds the LCD display backlight only. The voltage $\left(+5 \mathrm{~V}_{\mathrm{DC}}\right)$ which feeds all the logic circuits is obtained in place, for the low CMOS circuits consumption.

A small voltage transformer TF1 is directly connected to the power, its 9 V output is measured by U9 (MX536a), which detects the true effective value and send it through the second section of U6 to the main microprocessor for the control and visualization. The trimmer RT6 is a fine regulation of the measurement.

5.6 40WN and RFDC boards

These board represent the RF power amplifier and the output stage with the directional coupler.

The first two stages adopt typical class A polarized bipolar transistors; here the power adjustment is made by acting on the collector supply. So, by a $012 \mathrm{~V}_{\mathrm{DC}}$ control, a constant power adjustment in Watt/Volt is obtained, which is very important for a control stability.

The final stage (Q3) is a MOSFET which can deliver more than 60 W output; it's B class polarized through RT2. It's neutralized against unwanted oscillations by R21 and R14, R15 and R16. All the circuits are wide band and they do not require any alignment. The adoption of air-coiled inductors has allowed to remarkably reduce the space took by the circuits; moreover all the capacitors used in the output circuit are high quality type. The elliptic low pass filter placed at the output, after the power final stage, removes the harmonics by typically attenuating them more than 80 dB .
The inductor L19 short-circuits the final transistor, providing an accurate protection in case of discharges coming from the antenna.

The J2 output of the 40 WN module enters the RFDC directional coupler placed in another next metal box. This is made of two lines which are strip-line coupled at -30 dB . The forward and reflected power are detected by compensating with accuracy the frequency response of the directional coupler. The continuous voltages so obtained are amplified by U1, which introduces also a thermal compensation to the detecting diodes.

5.7 DLCD board

All the input and output data concerning the transmitter are controlled by the DLCD board, to which also the keyboard and the LCD display control and visualisation board are connected.

A Motorola microprocessor $68 \mathrm{HCl1}$ controls the whole transmitter through the J 1 and J 2 connectors: the keyboard is multiplexed by U6 and U9.

All the values to be measured are fed to the E port with the proper protections against overvoltages or polarity inversions (DZ1-... - DZ8 diodes).

A self supplied clock (U21) is connected to the D port through three lines.
The microcontroller serial port is switched by U2 and U25 on the RS232 connector placed on the front panel, on the rear one and on the RS485 port on the rear as well; the driver for RS232 is made of U18 (MAX232), while the one for RS485 is U19 (SN75176).

The ports B, C and F of the $\mu \mathrm{P}$ are connected to an external 128 KB flash memory, where the XPT management program is present, which at any time can be loaded through the front COM1 by any PC.

The G port is for all the outputs (pre-emphasis enabling, mono-stereo, alarms, measurement selection, etc.). The two external outputs for the alarms are uncoupled by two reed relays with closed or opened contacts selected by two jumpers placed on the MBA board (Z1 and Z2).

A part of the H port is used, as output in PWM, to control the forward and reflected power and the fine correction of the transmission frequency. The PWM mean value is detected with accuracy, to avoid errors due to supply voltage variations or saturation and interdiction of the H port outputs.

The operational amplifiers U11, U12, U13 and U14 are part of the powers control circuit The control loop has a cut frequency of several hundreds Hertz, so in few milliseconds the power can be controlled and eventually reduced or eliminated in extreme events. The microprocessor therefore provides to the loop the forward and reflected power reference values, the quantities to be checked are PWR and PWD, coming from the directional coupler, while the over stated operational amplifiers represent the error amplifier.

The LCD display, driven by the A port, is a 40 x 4 alphanumerical characters type and allows an useful displaying of data and transmitter settings.

ADJUSTMENTS

6.1 Module HSW - power supply

The HSW module, which feeds the whole equipment, has an input voltage of 48 Vdc provided from the rectified output of the power transformer, and it provides in output all the needed voltages: $+\mathbf{2 8 V d c},+15 \mathrm{Vdc},+5 \mathrm{Vdc}$, $15 V d c$.

Before switching on for the first time the equipment it's necessary to switch off the output connector J1 to adjust and verify all the output voltages. The power supply is placed on the radiator in a vertical position, parallel the transmitter right side. For its adjustment it's necessary to dismantle the right lateral by keeping off the two screws which connect it to the front panel and also the other two screws which connect it to the rear panel.

After the transmitter has been switched on the voltmeter is to be kept on the pin 12 of J1 (output connector) and RT2 will be adjusted to have 28 Vdc .

Leading the voltmeter pointer on the pin 13 of J1 RT5 is to be adjusted to have +15 Vdc .

Then it must be check that the voltages +5 Vdc on the pin 6 and -12 Vdc on the pin 7 are right.

Then the voltmeter is to be connected to the 1 of J 1 and RT3 is to be adjusted to have offset void (0 V): this is the output
 for the current measurement absorbed by the RF final.

RT1 must be placed at middle run and it will be adjusted as to limit the final current over 55 W output.

Once the adjustments have been done J 1 will be connected again observing the XPT normal operating.

The trimmer RT6 is adjusted so that the mains supply voltage measurement (230 or 115 Vac) is displayed coinciding to the one that is measured directly on the external line AC power supply.

6.2 40WN Module - RF final power

The RF power module is placed in a vertical position on the radiator, enclosed in a metal box. It's completely in wide band and it doesn't require any component alignment which adapt the input and output impedance of the different stages and antenna.

The only required adjustment is for the final and driver bias current.

The SMB connector at 90° which leads the RF input signal to the power amplifier module must be taken off and the trimmer RT1 is adjusted to have a voltage of 0.3 V at the resistance ends R11, which corresponds to a 0.3 A current.

Then the RT2 trimmer is adjusted to have a reading of 1A on the display at the correspondence of the $P A$ value visualisation in second page of the main measurements.

6.3 RFDC module- directional coupler

On the directional coupler, which is the module connected to the antenna connector and enclosed in a metal box placed on the radiator, four trimmers must be adjusted.

The SMB at 90° angle which drives the RF input signal to the power module is to be disabled and RT4 and RT2 are adjusted, so that the value 0 is displayed on the LCD at the correspondence of the forward and reflected power measurement.

At this moment the input power is to be connected, at 98 MHz frequency with a 25 W power will be set, it must be connected a thermal wattmeter at the antenna output and RT3 is set to read on the display, at the correspondence of the direct power, the 25 W value, read also on the thermal wattmeter.

Then the thermal wattmeter is to be disconnected and replaced with a directional Wattmeter connected without 50Ω charge as to have all the reflected power. A 5 W reflected power is to be set and RT2 adjusted to have the same reading on the measurement instrument.

6.4 MBA module - mother board

On the mother board it's possible to perform the modulation width setting, of the stereophonic coded signal levels, the automatic check gain regulation threshold, and the phase compensation and the multiplex signal width.

The mother board receives on three connectors the VCO oscillator module (SINTD), the stereophonic coded module and the automatic check gain module.

Adjust the trimmer RT4 of the MBA board as to have +8 Vdc at R 7 ends.
Inject a +6 dBm signal into the ear MPX input, after the same level in the settings window has been selected, then adjust the RT5 trimmer to read 75 KHz on the measurement main page at the modulation correspondence, by TX in MONO.

Inject a 400 Hz signal and +6 dBm level in the LEFT input, switch into STEREO and adjust RT7 of the MBA board to read still 75 KHz deviation also for MPX channel.

Adjust also RT1 if the subcarrier deviation at 19 KHz is not the 10% of the total and adjust again the previous RT7 trimmer.

Adjust the RT1 trimmer of the MBA board so that the limitation is symmetrical, on the upper and lower part of the wave form injected with a level higher than 6 dB over the nominal.

Adjust the RT6 trimmer of the MBA board to fix the clipper intervention threshold at the required value over 75 KHz .

Adjust the RT1 trimmer of the synthesis board to have the exact frequency deviation with the input nominal level presence.

Adjust the RT2 and RT3 trimmer of the MBA board for the maximum stereophonic division.

MODULATION MEASUREMENT

7.1 General information

The broadcast reception at frequency modulation is often made difficult because of the networks exceeding crowding; the interferences due to the adjacent channels makes the listening unpleasant. This inconvenient may be caused by a ignoring of the protection rules mentioned in the REC. ITUR BS.412-7 of which the remarkable graphs reported below:

The graph shows that if the interfering network is at 300 KHz far from the program we are listening, it must have a level higher than the maximum of 7 dB , if it's at 200 KHz the field intensity level at the point of listening, will be 6 dB lower in monophonic or 7 dB in stereophonic.

These values, expressed in dB as protection ratio, assume that the interfering network is broadcasting with the maximum allowed spectrum width and this reaches the maximum at the correspondence of peaks and the maximum modulation power. In a laboratory it's possible to simulate the worst example of modulation by modulating the transmitter, instead of dance-music,
with coloured noise as mentioned in the CCIR 559 rule (annex B). The process is described in the IEC 244-13 standard and consists of modulating the transmitter with noise as above, with a deviation equal to 32 KHz . This work condition corresponds to the maximum allowed band occupation and to a radio broadcast spreading dance-music which modulates $\pm 75 \mathrm{KHz}$.

At these conditions (modulated transmitter with coloured noise in accordance to CCIR-559) there is the chance to have a reference of a radiophonic transmitter at frequency modulation which occupies the maximum allowed spectrum and on which it's possible to perform all the modulation measurements repeatedly, having some parameters as results which can be applied and compared on the field to modulation measurements of a network which is broadcasting a normal music program.

The music signal can not be surely measured by a normal detector with effective or peak value, differently from a fix tone signal. The measurement must be done, being not sinusoidal or other periodical form, detecting the power of the signal self (function proportional to its instantaneous value square) or the peak with very long observation periods.

7.2 Modulation peak analysis measurement

The CEPT 54-01 rule shows, in its paragraph 4.2, how the peak measurement must be performed on the modulation of a frequency modulation transmitter.

The maximum deviation peak must be found in a 50 msec window, to be sure of catching also modulating frequencies till 20 Hz . At each minute 1200 representative peak modulation samples are available.

These values, obtained with even many minutes long observation periods, will be placed into a graph in the following manner:
on the abscissas, the frequency deviation will be placed with a deep scale of 150 KHz
on the ordinates the number of samples of the corresponding deviation value will be placed
It maybe by extreme examples it's possible to explain the concept better. Suppose to modulate the transmitter with a fix tone having a deviation of $\pm 75 \mathrm{KHz}$ and to perform the peak measurement in object for a period of 10 minutes. Thus 12000 samples all with the value 75 will be obtained: the graph will be of a single vertical line 12000 high and placed on the abscissa 75 (fig. 5.a).

On the opposite if we modulate the transmitter for 3 minutes with $\pm 20 \mathrm{KHz}$ deviation, then for further 3 minutes with $\pm 40 \mathrm{KHz}$ and at last for further 3 minutes with $\pm 50 \mathrm{KHz}$ and the observation period fixed at 9 minutes we will obtain 10800 samples 3600 of which will have abscissa 30, other 3600 samples abscissa 40 and the last ones abscissa 50 (fig. 5.b).

Now, instead of these simple examples, take our transmitter modulated with the sample noise previously mentioned, and we detect in accordance with the CEPT 54-01 the modulation peak samples in a 30 minutes observation period, so obtaining the graph. 5.c-a whereas, if we increase the modulation, always with the same input signal, of 1 dB , we'll obtain the graph 5.d-a with a 30 minutes observation period:

fig. 5.c-a
fig. 5.c-b

fig. 5.d-a
fig. 5.d-b
On the first graph it can be observed that during the 30 minutes about 2600 peak samples have been measured which have deviated the carrier of $\pm 54 \mathrm{KHz}, 1500 \pm 60 \mathrm{KHz}, 10 \pm 75 \mathrm{KHz}$, while about ten samples resulted higher than $\pm 75 \mathrm{KHz}$. What has been measured is a signal which respects all the spectrum occupation and over modulation rules; it can be soon noticed that this signal has been higher with its modulation peaks than the threshold of 75 KHz for about 0.2% of the samples so it's wrong to sustain that this value is never exceeded at all. Relying for the modulation adjustment on the bar-graph of which almost all the transmitters are equipped, one risks to have to under modulate if the trimmer is set to remain within 75 KHz .

In the figures $5 . \mathrm{c}-\mathrm{b}$ and $5 . \mathrm{d}-\mathrm{b}$, as suggested by CEPT 54-01, the "Accumulated distribution plot of deviation" have been reported on the graph, relating to the graphs of the left figures -a and -b ; in this case all the samples from left to right have been added and the samples total value has been normalized.

In other words, starting from left fig. $5 . \mathrm{d}-\mathrm{a}(0 \mathrm{KHz})$ and going towards right $(150 \mathrm{KHz})$ it's noticed that all the samples are towards right (100%) till about 35 KHz , to 50 KHz over than the 80% of samples is on the right, at 70 kHhz just the 5% of samples is on the right, as it has been evidenced on the graphs -b ordinates.

The CEPT 54-01 rule and the equivalent REC. ITU-R SM. 1268 and REC. ITU-R BS.412-7, at this point stop and they do not give exact and rigorous information about the interpretation of the graphs mentioned above.

On the opposite by connecting the different rules it's possible to analyse the graphs of fig. 5.c-a and $5 . \mathrm{c}-\mathrm{b}$ to draw some statistic parameters which, deriving from a reference system, can, as said previously, be applied to a typical music broadcast.

So some quantities will be defined peculiar to the two graphs which will define just one over modulation factor, whose value will be used as limit parameter.

Definitions:
M : average of all the measured samples as peak maximum every 50 msec
OM : average of the samples which have exceeded the 75 KHz threshold only
OM\% : samples percentage which has exceeded 75 KHz as to the total
K : over modulation factor, defined as follows:

$$
K=(O M-75) * O M \% / 100
$$

The formula can be explained easily and intuitively, since the over modulation factor is directly proportional to the peak number percentage detected over $75 \mathrm{KHz}(\mathrm{OM} \%$), while the ones lower than this threshold must not give any contribution to K , and it's also directly proportional to the peaks KHz value which have exceed 75 KHz (OM-75).

If no maximum peaks measured through the 50 msec samples has exceeded 75 KHz , we are in a favourable condition, $\mathrm{OM}=0$ and $\mathrm{OM} \%=0$ and so $\mathrm{K}=0$

If all the peaks exceed 75 KHz and their average is 78 then $\mathrm{K}=(78-75) * 100 / 100=3$
Now getting the example again of the transmitter modulated with coloured noise as to the CCIR559 and IEC-244 rules previously seen, which has originated the graphs of fig. 5c-a, 5c-b, 5d-a and 5d-b and we apply the above mentioned parameters and calculate them each minute. Thus it will be obtained other graphs which can be added to the two previous couples, so originating a screen shot full of all the parameters relating to the peak modulation measurement:

fig. 5.e

fig. 5.f
Examine the graphs of. 5.e, which could correspond to the modulation peak analysis of a regular transmitter which doesn't over modulate: in these each minute $\mathrm{M}, \mathrm{OM}, \mathrm{OM} \%$ values have been
calculated and consequently the K factor. It can be noticed that K value constantly keeps each minute below the value 0.01 .

So assume this value as limit for the over modulation factor.
Increasing the modulation of 1 dB the graphs in fig. 5.f are given, corresponding to a transmitter which deviates little more than $\pm 8 \mathrm{KHz}$; in this case K value is 0.11 . Thus it can be noticed that for small modulation values higher than $\pm 75 \mathrm{KHz}, \mathrm{K}$ increases considerably.

The rules rightly have tried to fix some limits for the instruments accuracy which need to perform this kind of measurements, but the system weakness is surely constituted by the receiver, with all its problems concerning the answer to quick transitory and also the peaks, which is almost ever distorted by the medium and low frequency filters group delaying with over elongations or miscompensated attenuation.

So it would be ideal to draw the modulating signal, which is usually available on all the transmitters, performing all the measurements on it, after having made sure of the exact relation between the audio level and the frequency deviation. In the TX50S this is automatic and we think if a modulation peak analysis measurement made far from the transmitter, has produced doubtful and questionable results, it must be repeated by the instrument inside the transmitter like in the TX50S.

The measurement must be started for a whole day observation period so to pick up the programs having most over modulation problems and consequently to act on the dynamic limiter-compressor every study must have. With this measurement method help it's possible to set best the limitercompressor no longer by ear but by real data and no more subjective elements.

7.3 Modulation power measurement

Another important parameter determining the interference intensity on the adjacent channel is the modulation power value. The term is not of common use and the idea that the modulation power can influence the interferences is not easy to understand.

Reading the CEPT 54-01 rule it's noticed that the transmitter modulation power in object must not exceed the samples reference signal one, represented by a sinusoidal signal which deviates 19 KHz of peak. The 19 KHz value has no relation with the stereophonic subcarrier value but it's the frequency deviation which the sample signal creates on the transmitter. On the tuned receiver this signal will be carried to the loudspeaker with a certain voltage directly proportional to the deviation value; then there will be a certain electric power on the loudspeaker equal to the effectual voltage square about divided into the loudspeaker impedance; it, at less of the diffuser efficiency, coincides to the acoustic power. So it's possible to believe the modulation power as the equivalent of the acoustic power spread by the loudspeaker, and perceived by our ears.

Thus as for the electric power, the equivalent mathematical rules are valid for the modulation power also. In the first case the value depends on the voltage square, in the second one on the deviation square.

In the case of a sinusoidal quantity, which may be voltage or deviation, the power is calculated for a time equal or multiple the semi period of the wave form, while in the case of a music signal the calculation is to be made by the integral which defines the power. Besides the modulation power value in absolute form would be of a difficult understanding, for this reason any sinusoidal signal is taken as reference whose power, for long observation periods, doesn't depend on the sinusoid frequency but only on its peak value square.

So the rule provides to measure the modulation power, which is as previously seen equal to modulating signal electric power, for one minute time period and to compare it to a sinusoidal modulating signal one which deviates $\pm 19 \mathrm{KHz}$. The result, expressed in dB , must be lower or equal to zero to comply the rule.

The modulation power integral calculation is made inside the transmitter by integrating, between 0 and 1 minute, the modulating signal square. The integration is made in a discreet manner by calculating the function area in the integration time; the signal sampling is made at a double speed respecting its bandwidth, so microprocessor is practically locked for a minute to follow instant by instant MPX signal value. After this period it performs the set values square, add them up, which is equal to the integral, then it calculates the logarithm respecting the reference sinusoidal value.
The value is displayed in a numerical form or on a graph (on the PC) which has in the abscissas the time (discreet with 1 min steps) and in the ordinates the value in dB of the music signal power and the reference sinusoidal one ratio.

Even in this case it's possible to refer to a modulating signal made of the usual coloured noise in accordance to CCIR-559 particularly Rec.ITU-R BS.412-7 mentions at pag.5-note 4:

> The power of a sinusoidal tone causing a peak deviation of 19 KHz is equal to the coloured noise modulation signal according to Recommendation ITU-R BS.641, i.e. a coloured noise signal causing a quasi-peak deviation of 32 KHz

So, for the modulation power measurement instrument alignment, it's possible to refer either to a 500 Hz sinusoidal signal (the frequency is not important) which makes the carrier to deviate of 19 KHz or to the coloured noise which deviates 32 KHz . Both signals give the listening the same sensation of " volume intensity ", told in non technical words and not considering physiological effects of the ear sensibility at the different frequencies.

7.4 Considerations on the real measurements performed

Performing modulation measurements with the methods described so far on broadcast networks which have been modulating for years without over modulation problems, one realizes how the limits imposed by the rules mentioned so far are particularly restrictive and maybe not in compliance with current reality.

There are some contradictions and gaps the rules self sometimes point out. We report two examples which give the idea of the real difficulty about the strict application of them:

Abstract

5. FREQUENCY DEVIATION OF THE SIGNAL GEN.

The unwanted transmitter L is then modulated with a 500 Hz sinusoidal tone obtained from audio generator A. Attenuator B is then adjusted to obtain a deviation of 32 KHz . The audio frequency level as the input of the unwanted transmitter before the pre-emphasis is now measured by means of the noise voltmeter U. The noise-weighting network is switched off. Next, a noise signal $C+D$ replaces the sinusoidal tone, and attenuator E is adjusted to obtain the same peak-reading as before at the noise voltmeter. The quasipeak deviation is thus equal to 32 KHz . Since the preemphasis has not been included in the level measurement, the actual peak deviation is higher. The described adjustment corresponds to the present-day broadcasting practice. Note. - A normal sound-broadcasting programme without compression is simulated by modulating the unwanted transmitter with the standardized coloured noise signal using a frequency deviation of 32 KHz . Therefore, the results obtained with this method and this deviation are only valid for sound broadcasting programmes without compression.

The not considering the pre-emphasis leads to a difference of 1 dB about, whereas the audio compressors installed now in every broadcast networks increase the modulation power of 2 dB further on.

If a stereophonic signal is being examined the Rec.ITU-R BS.412-7 is very clear and it makes no distinction between the modulation power within monophonic and stereophonic signal:

Rec. ITU-R BS.412-7	2.3 The radio-frequency protection ratios assume that the maximum peak deviation of 75 KHz is not exceeded. Moreover, it is assumed that the power of the complete multiplex signal including pilot-tone and additional signals, integrated over any interval of 60 s is not higher than the power of a MPX signal containing a single sinusoidal tone which causes a peak dev. of 19 KHz (see Note 4)

Note 4 - The power of a sinusoidal tone causing a peak dev. Of 19 KHz is equal to the power of the coloured noise modulation signal according to ITU-R BS. 641 i.e. a coloured noise signal causing a quasi-peak deviation of $32 \mathbf{K H z}$.

Whereas the IEC 244-13 makes a difference between monophonic signal (reference of 32 KHz) and stereophonic one $(40 \mathrm{KHz})$:

IEC 244-13

9.4 For monophonic operation

Check that the pre and de-emphasis filters are in circuit
Adjust the output of the LF generator at $<1 \mathrm{KHz}$ to a level
witch

deviation (32 KHz for 75 KHz dev.)

Measure the peak value by means of the noise meter at the out of the demodulator (without weighting network).
Switch the LF generator out of circuit and the noise generator in circuit and adjust the output of the noise generator , so that the noise meter gives the same reading. The peak-dev. is now correct.

For stereophonic operation
Check that the appropriate pre and de-emphasis are in circuit Adjust the output of the LF generator at $<1 \mathrm{KHz}$ to a level corresponding to a frequency deviation of 40 KHz including pilot tone.
Measure the peak value in channel B after the demodulator and stereo encoder by means of the noise meter (without the weighting network). For the remaining procedure, see the method used for monophonic operation

In case of stereophonic broadcast in accordance to the IEC $244-13$ rule the reference power is moved highwards of 1.9 dB in relation to the corresponding REC. ITU-R BS.412-7.

REMOTE CONTROL

8.1 PC connections

The transmitter can be connected to a Personal Computer through a three wires serial cable.
There are three serial ports: the first (COM1), placed on the front panel works as monitor for a connection to a PC, the second (COM2), placed on the back needs for the connection to a possible power amplifier, with the third (COM3) it's possible to connect a modem linked to a telephone line or to do the connection of $\mathrm{N}+1$ transmitters.

The PC must have:

processor	$:$	PENTIUM o sup.
Operative system	$:$	WIN3.1/WIN95 / WIN98
RAM	$:$	$32 M B$
Non volatile memory	$:$	$32 M B$
Graphic	$:$	SVGA 600x800/768x1024
CD reader		

8.2 COM1

If one wishes to connect a PC to replace the transmitter keyboard and thus have a wider and easier communication to every visualisation and control function, it's possible to connect the DB9 front port (COM1) to a serial cable with at least three wires to the serial port of a personal computer where the communicating software provided on the transmitter enclosed CD has been already loaded. If unready it is sufficient to start the SETUP and automatically the software is installed as to create an icon (XPT-50), which will need for the program start.

Once started it will appear on the display:

Pag. 49

The screen cursor which displays the modulation will be still and the low left inscription RS232 Connection will show: not connected. At this point it is essential, after the transmitter has been switched on, to make it communicate.

So the transmitter keyboard blue button marked as REMOTE 232 must be entered
The following page will appear on the display:

which indicates that by default the COM1 connection has been chosen instead of the COM3 and on the COM2 no power amplifier is connected.

If on the COM2 an amplifier was connected automatically it would be detected and its caption would appear beside the COM2 one.

If a modem connected to the telephone line is to be connected it needs to select by the horizontal cursor and the data key the COM3.

If the selected options are right, pressing ENTER the communication to the PC connected to the COM1 is entered, the blue key led switches on, on the display the cursor moves from left towards right, displaying the modulation peaks as an oscilloscope and the caption connected will appear on the left bottom.

The first page is just an introduction to the system, of which it's possible to know the options installed or the hour of the last switching on. At the right bottom of the display there is a grey window with an arrow and if it is entered it's possible to enter into the following pages:

The second page allows to know all the transmitter operation data: frequency-power etc., without the possibility to modify them. Choosing by the lower arrow the third page the data displaying of the input low frequency signal and modulation can be entered:

All the pages have different coloured windows to divide the width measurements from the setting of them. On the top of this page it's possible to check which channel is displayed on the screen shot (COMPOSITE); to change this display because, for example, one wants to check the LEFT course, one must enter the lower window (MODULATION SETTINGS), and press "DATA SETTING ENTER". The red button will switch on, the modulation will disappear and changing in the window "Channel Modulation", the respective changes will be displayed on the higher window too. When the chosen data are the requested ones it's possible to switch the red button off and the normal displaying will be restored.

Selecting the fourth page the power settings are entered:

Here also the settings are distinguished from the measurements by a different colour.
To change data it is sufficient to press the red button, which will lighten, and will change data in the RF POWER SETTING window. At every new setting a changing of the measurement displayed above will correspond. On the top right window also the power final stage parameters are reported.

Choosing the next page there will be:

Here the transmitter clock settings and frequencies can be changed.

Differently from the previous pages, here the variations cannot be performed in real time, to avoid the transmitter goes on unwanted frequencies. So, at first data must be inserted then the red button must be pressed to enter them. During the frequency change power is disabled for few seconds and the oscillator anomalous condition is not stored as alarm. If an out-of-channelization frequency is entered, the item is ignored.

It is also possible a fine frequency correction, to correct the crystal ageing by inserting a number included between 0 and 255 and checking by a frequency-meter connected to the RF monitor.

The following page allows the alarm displaying and erasing:

The quantities controlled by this function are:
MAINS SUPPLY VOLTAGE
CURRENT ON THE RF FINAL
VOLTAGE ON THE RF FINAL

RF FINAL RADIATOR TEMPERATURE

MODULATION ABSENCE

SYNTHESIZED OSCILLATOR ANOMALOUS OPERATING

EXTERNAL CARRIER ENABLE

Whenever the limits joined to each quantity mentioned above are exceeded, the output power is taken off, a visual signalling and ON/OFF contacts are given and the event is stored and associated to the date when it has occurred.

Besides the ceased alarms are stored as to know the output power absence period.
As for the keyboard, the alarms can be erased.
The last pages are dedicated to the modulation analysis measurement (power and peak):

As appendix the whole theory concerning this kind of measurements is dealt in chapter 7, dedicated to the modulation measurements.

In the upper graphs the peak modulation statistic parameters of a broadcast network observed during 10 minutes period are reported. It can be observed that the $\mathbf{1 2 0 0 0}$ peak measurement samples detected lead to consider that the network is on the limit of the allowed deviation; the last K diagram clearly shows the spoken broadcasting for the first two minutes followed by a music passage ($\mathrm{K}>4$), at the end other two minutes spoken ($\mathrm{K}<3$).

By entering HELP on the window the followed rule appears (CEPT 54-01). The observation time period is edited in ANALYSIS TIME followed by START.

TX50S INTERNAL ADJUSTMENTS \& SETTINGS

See figg. 9.a , 9.b, 9.c for function number

N°	Board name, Component	FUNCTION	DESCRIPTION
0	MBA/RT7	MPX frequency deviation	Adjust, with nominal MPX input level, for 75 Khz frequency deviation
1	DMPX/C22	Pilot frequency	Adjust stereo subcarrier to $19 \mathrm{Khz}+/-1 \mathrm{~Hz}$
2	DMPX/RT1	Pilot level	Adjust to 20dB less than MPX signal
3	DMPX/RT3	Pilot phase	Adjust to the right phase by antiphase tecnique
4	DMPX/RT2	MPX spurious	Adjust for minimum spurious of MPX signal
5	DLCD/Z1	Run/Boot	Set jumper to RUN for normal operation, to BOOT for firmware loading (by COM1)
6	DLCD/P9	MCU reset	Press button to Reset 68HC11 microcontroller
7	DLCD/BT1	Clock battery	Use only 3.3 V lithium battery (WARNING:TOXIC COMPONENT)
8	DLCD/Z2	Password	Set jumper to PASSW. to enable password function.
9	MBA/RT5	Freq.dev.display	Adjust to display modulation $=75 \mathrm{Khz}$ on Page 0
10	MBA/RT4	Pilot THD	Adjust to minimum pilot THD
11	AGC/RT1	AGC level input	Adjust, with nominal LF level input, DC voltage on DZ1 to 2.6 V
12	MBA/RT1	Clipper symm.	Adjust for clipper symmetry
13	MBA/RT6	Clipper level	Adjust to the desired clipper level
14	MBA/RT2	Chan. separation	Adjust for max channel separation
15	MBA/RT3	Chan. separation	Adjust for max channel separation
16	SINTD/RT1	Mono frequency deviation	Adjust, with nominal mono audiolevel in MPX input, for 75 Khz deviation
17	SINTD/CV1	Frequency	Adjust to right output frequency with fine frequency number set to 100
18	HSW/RT6	Line voltage meas.	Adjust to display on page 0 line voltage measured between M2 connector pins on HSW board
19	HSW/RT3	PAC meas.	Adjust to 0Vdc on PAC (J1-1) without connector
20	HSW/RT2	$+28 \mathrm{Vdc}$	Adjust to 28 Vdc (J1-12)
21	HSW/RT5	$+15 \mathrm{Vdc}$	Adjust to 15 Vdc (J1-13)
22	HSW/RT1	PAC limiter	Rotate completely clockwise for Ilim $>5 \mathrm{~A}$ (max value)
23	RFDC/RT2	PWR offset	Adjust to obtain (without RFin) 0Vdc on PWR feedthrough
24	RFDC/RT1	PWR meas.	Adjust to read on display (without RF load) PWD $=$ PWR (PWR set = 5W)
25	RFDC/RT3	PWD meas.	Adjust to obtain Pout $=50 \mathrm{~W}$ (PWD set $=50 \mathrm{~W}$)
26	RFDC/RT4	PWD offset	Adjust to obtain (without RFin) 0Vdc on PWD feedthrough
27	$40 \mathrm{WN} / \mathrm{RT} 2$	Final RF mosfet current meas.	Adjust to read (without RF) PACurrent=1A on display page 1
28	40WN/RT1	Driver current	Adjust to obtain (without RF) 35 mVdc voltage drop on R11

\qquad

Pag. 58

TX50S REAR CONNECTIONS \& SETTINGS

See fig. 9.d for function number

N°	FUNCTION	CONNECTION		
1	AUX IN/OUT	PIN NUMBER (DB9)	1	NC
			2	NC
			3	NC
			4	NC
			5	GND
			6	EXTERNAL PWD
			7	EXTERNAL PWR
			8	NC
			9	NC
2	AES/EBU IN	PIN NUMBER (DB9)	1	NC
			2	NC
			3	NC
			4	NC
			5	GND
			6	I1
			7	I2
			8	NC
			9	NC
3	COM2 RS232 to power amplifier	PIN NUMBER (DB9)	1	NC
			2	RX (amplifier)
			3	TX (amplifier)
			4	NC
			5	GND
			6	NC
			7	NC
			8	NC
			9	NC
4	COM3A RS485 to remote control (external Modem) or $\mathrm{N}+1$ system	PIN NUMBER (DB9)	1	NC
			2	INPUT RS485 +
			3	INPUT RS485 -
			4	NC
			5	GND
			6	NC
			7	NC
			8	NC
			9	NC

N°	FUNCTION	CONNECTION		
5	COM3B RS485 to $\mathrm{N}+1$ system	PIN NUMBER (DB9)	1	NC
			2	INPUT RS485 +
			3	INPUT RS485-
			4	NC
			5	GND
			6	NC
			7	NC
			8	NC
			9	NC
6	IN/OUT	PIN NUMBER (DB9)	1	$19 \mathrm{Khz} \mathrm{sync} .\mathrm{out} \mathrm{(} 1 \mathrm{Vpp}$ out)
			2	EX Carrier enable input (input contact open = enable)
			3	ALARM1 out (closed or open output contact / Z1, Z2 - MBA board)
			4	ALARM2 out (closed or open output contact / Z1, Z2 - MBA board)
			5	GND
			6	NC
			7	NC
			8	NC
			9	NC
7	EXTERNAL MONO / MPX INPUT ADJUSTMENT	Trimmer RT5 / AUDIO IN board $-6 /+12 \mathrm{dBm}$ adj. for 75 Khz modulation frequency		
8	SUBCARRIER 1 INPUT ADJUSTMENT	Trimmer RT1 / AUDIO IN board -20 dBu adj.		
9	SUBCARRIER 2 INPUT ADJUSTMENT	Trimmer RT2 / AUDIO IN board -20 dBu adj.		
10	NOMINAL VALUE LF INPUT SETSETTING	Jumpers Z3,Z4,Z5,Z6 / AUDIO IN board $0,4.1,6$, variable $(-6 /+12) \mathrm{dBm}$ setting choice		
11	PREEMPHASIS VALUE CHOICE	Jumpers Z8,Z2 / AUDIO IN board 50 / 75 microseconds choice		
12	MONO INPUT (L / R) IMPEDENCE CHOICE	Jumpers Z1,Z7 / AUDIO IN board 600 Ohm / 10 Kohm choice		
13	$\begin{gathered} \hline \hline \text { LEFT INPUT } \\ \text { ADJUSTMENT } \end{gathered}$	Trimmer RT4 / AUDIO IN board$-6 /+12 \mathrm{dBm}$ adj. for 75 Khz modulation frequency		
14	RIGHT INPUT ADJUSTMENT	Trimmer RT3 / AUDIO IN board $-6 / 12 \mathrm{dBm}$ adj. for 75 Khz modulation frequency		
15	$\begin{aligned} & \hline \hline \text { SCA1 \& SCA2 } \\ & \text { INPUTS } \end{aligned}$	BNC connector		
16	EXTERNAL MPX INPUT	BNC connector		
17	LEFT INPUT	PIN NUMBER (Cannon)	1	GND
			2	LEFT + (unbalanced with GND)
			3	LEFT - (balanced with LEFT +)
18	RIGHT INPUT	PIN NUMBER (Cannon)	1	GND
			2	RIGHT + (unbalanced with GND)
			3	RIGHT - (balanced with RIGHT +)
19	RF OUT	N connector		

Fig. 9.d

DIAGRAMS AND LAYOUTS

HSW BOARD - POWER SUPPLY

Pag. 64

HSW BOARD - POWER SUPPLY

Pag. 65

HSW BOARD - POWER SUPPLY

Pag. 66

AUDIOIN BOARD - AUDIO INPUTS

Pag. 68

AUDIOIN BOARD - AUDIO INPUTS

Pag. 69

BRONDCASTMG DNOLION

AUDIOIN BOARD- AUDIO INPUTS

Pag. 70

AUDIOIN BOARD- AUDIO INPUTS

item	\|qty	\| part number	\|Val	\|Tol	\|Work	\|description		
1	11	\|BERG100F1X06V	1	I	I	\|Physical Connector	\|J6	
2	\|1	\|BERG100M1X02V	I	I	I	\|Physical Connector	\|J2	
3	11	\|BERG100M1X02V	1	I	I	\|Physical Connector	\|J3	
4	\|1	\|BERG100M1X03V	1	I	I	\|Physical Connector	\|J4	
5	\|1	\|BERG100M1X05V	1	I	1	\|Physical Connector	\|J5	
6	\|1	\|CPVP_6n8_63V	$16 n 8$	\|10\%	163v	\|capacitor	\|C19	
7	\|1	\| CPVP _6n8_63V	\|6n8	\|10\%	163V	\|capacitor	\|C20	
8	\|1	(C1210_1n	11 n	120	I	\|capacitor	\|C7	
9	\|1	\|C1210_1n	\|1n	120	I	\|capacitor	\|C2	
10	\|1	\| $\mathrm{C} 1210{ }^{-1 \mathrm{n}}$	11 n	120	I	\|capacitor	\|C1	
11	\|1	\|C1210_1n	\|1n	120	I	\|capacitor	\|C3	
12	\|1	\|C1210_1n	11 n	120	I	\|capacitor	\|C8	
13	\|1	\|C1210_1n	11 n	120	I	\|capacitor	\|C4	
14	11	\|C1210_1n	\|1n	120	I	\|capacitor	\|C5	
15	\|1	(C1210_1n	11 n	120	I	\|capacitor	\|C6	
16	\|1	\|C4051BD	,	1	I	\|Multiplexer, Analog 8-Bit	\|U12	
17	11	IC4051BD	I	I	I	\|Multiplexer, Analog 8-Bit	\|U13	
18	11	IC4051BD	I	I	I	\|Multiplexer, Analog 8-Bit	\|U16	
19	\|1	\|C4052BD	I	I	I	\|Multiplexer, Analog Dual 4-Bit	\|U11	
20	\|1	\|C4052BD	1	I	I	\|Multiplexer, Analog Dual 4-Bit	\|U14	
21	\|1	IC4052BD	I	I	I	\|Multiplexer, Analog Dual 4-Bit	\|U15	
22	\|1	\|C4532BD	1	1	I	\|Decoder, 3-to-8 Line	\|U17	
23	\|1	\|JFL_26M	I	I	I	\|Connector Flat 26 pins	\|J1	
24	\|1	\|LL4148	I	I	I	\|diode	\|D14	
25	\|1	\|LL4148	I	1	I	\|diode	\|D7	
26	\|1	\|LL4148	I	1	I	\|diode	\|D9	
27	\|1	\|LL4148	I	1	I	\|diode	\|D8	
28	\|1	\|LL4148	I	I	I	\|diode	\|D2	
29	11	\|LL4148	,	I	I	\|diode	\|D3	
30	\|1	\|LL4148	I	1	I	\|diode	\|D10	
31	\|1	\|LL4148	I	1	I	\|diode	\|D11	
32	\|1	\|LL4148	I	I	I	\|diode	\|D1	
33	\|1	\|LL4148	I	I	I	\|diode	\|D4	
34	\|1	\|LL4148	I	,	I	\|diode	\|D12	
35	\|1	\|LL4148	I	1	,	\|diode	\|D5	
36	\|1	\|LL4148	1	1	I	\|diode	\|D13	
37	\|1	\|LL4148	,	I	I	\|diode	\|D6	
38	\|1	\|L1812_1mH	\| 1 mH	I	I	\|inductor	\|L7	
39	\|1	\|L1812_1mH	\| 1 mH	I	I	\|inductor	\|L6	
40	\|1	\|L1812_1mH	\|10uH	I	I	\|inductor	\|L9	
41	\|1	\|L1812_1mH	\|10uH	1	I	\|inductor	\|L2	
42	\|1	\|L1812_1mH	\|10uH	I	I	\|inductor	\|L1	
43	\|1	\|L1812_1mH	\|10uH	1	1	\|inductor	\|L3	
44	\|1	\|L1812_1mH	\|10uH	I	I	\|inductor	\|L4	
45	\|1	\|L1812_1mH	\|10uH	1	I	\|inductor	\|L5	
46	\|1	\|L1812_1mH	\|10uH	1	I	\|inductor	\| 48	
47	11	\|PIN_WIRE	1	I	I	\| Pin Wire	\|W5	
48	\|1	\|PIN_WIRE	I	I	I	\| Pin Wire	\|W6	
49	11	\|PIN_WIRE	1	,	I	\| Pin Wire	\|W7	
50	11	\|RT_72P	\|10K	110\%	1	\|resistor	\|RT1	
51	\|1	\|RT_72P	\|10K	\|10\%	I	\|resistor	\|RT2	
52	\|1	\|RT_72P-20K	120K	\|10\%	,	\|resistor	\|RT3	COD
53	\|1	\|RT_72P-20K	120K	\|10\%	I	\|resistor	\|RT4	COD
54	\|1	\|RT_72P-20K	\|20K	\|10\%	I	\|resistor	\|RT5	COD
55	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R44	
56	\|1	\|R1206-F-2K22	\|2K22	\|1\%	,	\|resistor	\|R49	
57	\|1	\|R1206-F-2K22	\|2K22	11\%	1	\|resistor	\|R39	
58	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R31	
59	\|1	\|R1206-F-2K22	\|2K22	\|1\%	1	\|resistor	\|R30	
60	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R28	
61	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R46	
62	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R35	
63	11	\|R1206-F-2K22	\|2K22	11\%	I	\|resistor	\|R34	
64	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R37	
65	11	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R36	
66	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R29	
67	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R38	
68	11	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R40	
69	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R41	
70	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R50	
71	\|1	\|R1206-F-2K22	\|2K22	\|1\%	,	\|resistor	\|R85	
72	11	\|R1206-F-2K22	12K22	11\%	I	\|resistor	\|R86	
73	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R83	
74	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R84	
75	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R81	
76	\|1	\|R1206-F-2K22	\|2K22	11\%	I	\|resistor	\|R82	
77	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R47	COD
78	\|1	\|R1206-F-2K22	\|2K22	\|1\%	1	\|resistor	\|R43	COD
79	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R18	COD
80	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R48	COD
81	\|1	\|R1206-F-2K22	\|2K22	\|1\%	I	\|resistor	\|R32	COD
82	11	\|R1206-F-2K22	\| 2 K 22	11\%	1	\|resistor	\|R16	COD

Pag. 71
$\begin{array}{lll}93 & \mid 1 & \mid R 1206-\mathrm{F}-10 \mathrm{~K} 5 \\ 94 & \mid 1 & \mid R 1206-\mathrm{F}-10 \mathrm{~K} 7\end{array}$ $\begin{array}{lll}94 & \mid 1 & \text { |R1206-F-10K7 } \\ 95 & \mid 1 & \mid R 1206-F-10 K 7\end{array}$ 96 |1 |R1206-F-10K7 $\begin{array}{lll}97 & \text { |1 } & \text { |R1206-F-22K1 } \\ 98 & \mid 1 & \text { |R1206-F-22K1 }\end{array}$ $\begin{array}{lll}98 & \mid 1 & \text { |R1206-F-22K1 } \\ 99 & \text { |1 } & \text { |R1206-J-1K0 }\end{array}$ 100 |1 |R1206-J-1K0

101	\|1	\|R1206-J-1K0
102	\|1	\|R1206-J-1K0

103 |1 |R1206-J-1K0

104 |1 |R1206-J-1K0
$\begin{array}{lll}105 & \text { |1 } & \text { |R1206-J-1K0 } \\ 106 & \text { |1 } & \text { |R1206-J-1K0 }\end{array}$
$\begin{array}{lll}107 & 11 & \text { |R1206-J-1K0 } \\ 108 & \text { I1 } & \text { |R1206-J-1K0 }\end{array}$
109 |1 |R1206-J-1K2
$\begin{array}{lll}110 & 11 & \text { |R1206-J-4K7 } \\ 111 & \text { |1 } & \text { |R1206-J-4K7 }\end{array}$
$\begin{array}{lll}111 & \text { |1 } & \text { |R1206-J-4K7 } \\ 112 & \text { |1 } & \text { |R1206-J-5K6 } \\ 113 & \text { |1 } & \text { |R1206-J }\end{array}$
113 |1 |R1206-J-10K
$\begin{array}{lll}114 & 11 & \text { |R1206-J-10K } \\ 115 & \text { |R1206-J-10K }\end{array}$
$\begin{array}{lll}116 & \text { |1 } & \text { |R1206-J-10K } \\ 117 & \text { |1 } & \text { |R1206-J-10K }\end{array}$
118 |1 |R1206-J-10K
119 |1 |R1206-J-10K
$\begin{array}{lll}120 & \text { |1 } & \text { |R1206-J-10K } \\ 121 & \text { |1 } & \text { |R1206-J-10K }\end{array}$
$\begin{array}{lll}122 & \mid 1 & \text { |R1206-J-10K } \\ 123 & \text { I } & \mid R 1206-J-10 K\end{array}$
124 |1 |R1206-J-10K
$\begin{array}{lll}125 & \text { |1 } & \text { |R1206-J-10K } \\ 126 & \text { |1 } & \text { |R1206-J-11K }\end{array}$
127 |1 |R1206-J-11K
129 |1 |R1206-J-22K
130 |1 |R1206-J-47R
132 |1 $\begin{array}{ll}\text { |R1206-J-100K }\end{array}$
$\begin{array}{lll}133 & \text { |1 } & \text { |R1206-J-120R } \\ 134 & \text { |1 } & \text { |R1206-J-120R }\end{array}$
$\begin{array}{lll}134 & \text { |1 } & \text { |R1206-J-120R } \\ 135 & \text { |1 } & \text { |R1206-J-120R } \\ 136 & \text { |1 } & \text { |R1206-J-120R }\end{array}$
$\begin{array}{lll}136 & \text { |1 } & \text { |R1206-J-120R } \\ 137 & \text { |1 } & \text { |R1206-J-120R } \\ 138 & \text { |1 } & \text { |R1206-J-120R }\end{array}$
$\begin{array}{lll}138 & \text { |1 } & \text { |R1206-J-120R } \\ 139 & \text { |1 } & \text { |R1206-J-120R } \\ 140 & \text { |1 } & \text { |R1206-J-680R }\end{array}$
141 |1 |R1206-J-680R
142 |1 |TAJ_10u-25V
$\begin{array}{lll}143 & 11 & \mid \text { TAJ } \\ 144 & 11 & \text { TTA } \\ \end{array}$
$\begin{array}{lll}144 & 11 & \mid T A J _10 u-25 V \\ 145 & 11 & \mid T A J _10 \mathrm{u}-25 \mathrm{~V}\end{array}$
146 |1 |TAJ_10u-25V

147	11	$\mid T A J-10 \mathrm{u}-25 \mathrm{~V}$
148	11	TAJ $10 \mathrm{u}-25 \mathrm{~V}$

$\begin{array}{lll}148 & \mid 1 & \mid T A J-10 u-25 V \\ 149 & \mid 1 & \mid T A J 10 u-25 V\end{array}$
$\begin{array}{lll}149 & 11 & \mid T A J-10 u-25 V \\ 150 & \mid 1 & \mid T A J 10 u-25 v\end{array}$
151 |1 |TAJ_10u-25V
152 |1 |TL072D
153 |1 |TL072D
154 |1 |TL072D
$\begin{array}{lll}155 & \mid 1 & \mid T L 072 D \\ 156 & \mid 1 & \mid T L 072 D\end{array}$
157 |1 |TL072D
158 |1 |TL072D
$\begin{array}{lll}159 & \mid 1 & \mid T L 072 \mathrm{D} \\ 160 & \mid 1 & \mid T L 072 \mathrm{D}\end{array}$
161 |1 |TL072D
162 |1 |TL072D
$\begin{array}{lll}163 & \text { |1 } & \text { | ZMM5V6 } \\ 164 & \text { |1 } & \text { |Z2 P100 }\end{array}$
$\begin{array}{lll}164 & \mid 1 & \mid Z 2 _ \text {P100 } \\ 165 & \mid 1 & \mid Z 2 _ \text {P100 }\end{array}$
$166 \quad|1 \quad| Z 2-\mathrm{P} 100$
167 |1 |Z2_P100
$\begin{array}{lll}168 & \mid 1 & \mid Z 2-P 100 \\ 169 & \mid 1 & \mid Z 2-P 100\end{array}$
$\begin{array}{lll}169 & \text { |1 } & \text { |Z2_P100 } \\ 170 & \text { |1 } & \text { |Z2_P100 }\end{array}$
171 |1 |Z2 P100
172 |1 |c1206-100n

| \|2K22 | \|1\% | 1 | \|resistor | \|R17|COD |
| :---: | :---: | :---: | :---: | :---: |
| 15K23 | \|1\% | 1 | \|resistor | \|R25|COD |
| 15K23 | \|1\% | I | \|resistor | \|R27|COD |
| 15K23 | \|1\% | 1 | \|resistor | \|R26|COD |
| \|5K62 | \|1\% | I | \|resistor | \|R87|COD |
| \|8K45 | \|1\% | I | \|resistor | \|R22|COD |
| 18K45 | \|1\% | I | \|resistor | \|R24|COD |
| \| $8 \mathrm{K45}$ | 11\% | 1 | \|resistor | \|R23|COD |
| \|10K5 | \|1\% | 1 | \|resistor | \|R21|COD |
| \|10K5 | \|1\% | I | \|resistor | \|R19|COD |
| \|10K5 | \|1\% | I | \|resistor | \|R20|COD |
| \|10K7 | \|1\% | 1 | \|resistor | \|R45|COD |
| \|10K7 | \|1\% | I | \|resistor | \|R33|COD |
| \|10K7 | \|1\% | I | \|resistor | \|R42|COD |
| \|22K1 | 11\% | 1 | \|resistor | \|R80| |
| \|22K1 | \|1\% | 1 | \|resistor | \|R79 | |
| \|1K0 | 15\% | 1 | \|resistor | \|R56| |
| \|1K0 | 15\% | 1 | \|resistor | \|R57| |
| \|1K0 | 15\% | I | \|resistor | \|R55| |
| \|1K0 | 15\% | I | \|resistor | \|R58| |
| \|1K0 | 15\% | I | \|resistor | \|R54| |
| \|1K0 | 15\% | I | \|resistor | \|R53| |
| \|1K0 | 15\% | I | \|resistor | \|R51| |
| \|1K0 | 15\% | I | \|resistor | \|R52| |
| \|1K0 | 15\% | 1 | \|resistor | \|R76|COD |
| \|1K0 | 15\% | , | \|resistor | \|R77|COD |
| \|1K2 | 15\% | 1 | \|resistor | \|R70| |
| \| 4K7 | 15\% | 1 | \|resistor | \|R62 | |
| \|4K7 | 15\% | 1 | \|resistor | \|R61| |
| $\mid 120$ | 15\% | 1 | \|resistor | \|R78| |
| \|10K | 15\% | I | \mid resistor | \|R4| |
| \|10K | 15\% | 1 | \|resistor | \|R5| |
| \|10K | 15\% | 1 | \|resistor | \|R3| |
| \|10K | 15\% | 1 | \|resistor | \|R6| |
| \|10K | 15\% | I | \|resistor | \|R15 | |
| \|10K | 15\% | I | \|resistor | \|R7| |
| \|10K | 15\% | 1 | \|resistor | \|R8| |
| 122K | 15\% | I | \|resistor | \|R9| |
| \|10K | 15\% | I | \|resistor | \|R10| |
| 122K | 15\% | 1 | \|resistor | \|R11| |
| 122K | 15\% | I | \|resistor | \|R12 | |
| 122K | 15\% | I | \|resistor | \|R13| |
| 122K | 15\% | 1 | \|resistor | \|R14| |
| \|11K | 15\% | I | \|resistor | \|R72 | |
| \|11K | 15\% | I | \|resistor | \|R73| |
| \|22K | 15\% | I | \|resistor | \|R75| |
| 122K | 15\% | 1 | \|resistor | \|R74 | |
| \|47R | 15\% | 1 | \|resistor | \|R60 | |
| 147R | 15\% | I | \|resistor | \|R59| |
| \|100K | 15\% | , | \|resistor | \|R71| |
| \|120R | 15\% | , | \|resistor | \|R64| |
| \|120R | 15\% | I | \|resistor | \|R67| |
| \|120R | 15\% | I | \|resistor | \|R65 | |
| \|120R | 15\% | 1 | \|resistor | \|R69 | |
| \|120R | 15\% | I | \|resistor | \|R63| |
| \|120R | 15\% | 1 | \|resistor | \|R66| |
| \|120R | 15\% | , | \|resistor | \|R68| |
| \| 680R | 15\% | I | \|resistor | \|R1| |
| \|680R | 15\% | I | \|resistor | \|R2| |
| \|10u | 120\% | \|25v | 1 | \|C17| |
| \|10u | 120\% | \|25v | I | \|C10| |
| \|10u | 120\% | \|25v | 1 | \|C18| |
| \|10u | 120\% | \|25v | I | \|C11| |
| \|10u | \|20\% | \|25v | I | \|C12| |
| \|10u | 120\% | \|25v | I | \|C13| |
| \|10u | \|20\% | \|25v | I | \|C14| |
| \|10u | 120\% | 125 V | 1 | \|C15| |
| 110u | 120\% | 125 V | , | \|C16| |
| \|10u | 120\% | 125 V | 1 | \|C91 |
| I | 1 | I | IOpamp 5-pin | \| 01 | |
| I | 1 | 1 | IOpamp 5-pin | \|U2| |
| 1 | 1 | I | IOpamp 5-pin | \|U18| |
| 1 | I | 1 | IOpamp 5-pin | \|U3| |
| I | I | I | IOpamp 5-pin | \|06| |
| 1 | , | I | \|Opamp 5-pin | \|U7| |
| 1 | I | I | IOpamp 5-pin | \|U5| |
| 1 | 1 | 1 | IOpamp 5-pin | \|04| |
| 1 | I | 1 | IOpamp 5-pin | \|08| |
| 1 | I | I | IOpamp 5-pin | \|09| |
| 1 | I | I | \|Opamp 5-pin | \|U10| |
| 1 | , | I | \| zener diode | \|DZ1| |
| I | , | 1 | , | \| 21 | |
| 1 | , | 1 | I | \|27| |
| 1 | I | 1 | 1 | \| 22 | |
| 1 | I | , | , | \| 261 |
| 1 | 1 | 1 | 1 | \| 25 | |
| , | , | 1 | , | \| $\mathrm{Z4}$ \| |
| I | , | I | I | \| 23 | |
| ${ }_{1} 100 \mathrm{n}$ | \|10\% | ${ }_{\text {\| } 250}$ | \|capacitor | |

Pag. 72

BRONOCASTMG DSISION								
173	\|1	\|c1206-100n	\|100n	\|10\%	\|25V	\|capacitor	\|CF11A	
174	\|1	\|c1206-100n	1100n	\|10\%	\|25V	\|capacitor	\|CF13A	
175	\|1	\|c1206-100n	1100 n	\|10\%	\|25v	\|capacitor	\|CF15A	
176	\|1	\|c1206-100n	$1100 n$	110\%	125 V	\| capacitor	\|CF8A	
177	\|1	\|c1206-100n	1100n	\|10\%	125V	\|capacitor	\|CF10A	
178	11	\|c1206-100n	$1100 n$	110\%	125 V	\|capacitor	\|CF12A	
179	\|1	\|c1206-100n	1100 n	110\%	\|25v	\|capacitor	\|CF14A	
180	\|1	\|c1206-100n	\|100n	\|10\%	\|25V	\|capacitor	\|CF16A	
181	\|1	\|c1206-100n	1100 n	\|10\%	\|25v	\|capacitor	\|CF17A	
182	\|1	\|c1206-100n	1100 n	\|10\%	\|25V	\|capacitor	\|CF8B	
183	11	\|c1206-100n	1100 n	\|10\%	125V	\|capacitor	\|CF9B	
184	\|1	\|c1206-100n	1100n	\|10\%	\|25V	\|capacitor	\|CF10B	
185	11	\|c1206-100n	$1100 n$	110\%	125 V	\|capacitor	\|CF11B	
186	11	\|c1206-100n	$1100 n$	110\%	125 V	\|capacitor	\|CF12B	
187	\|1	\|c1206-100n	$1100 n$	\|10\%	125 V	\|capacitor	\|CF13B	
188	\|1	\|c1206-100n	1100 n	110\%	\|25v	\|capacitor	\|CF14B	
189	\|1	\|c1206-100n	$1100 n$	\|10\%	125 V	\|capacitor	\|CF15B	
190	\|1	\|c1206-100n	$1100 n$	\|10\%	125V	\|capacitor	\|CF16B	
191	\|1	\|c1206-100n	1100 n	\|10\%	\|25v	\|capacitor	\|CF2A]	
192	\|1	\|c1206-100n	$1100 n$	\|10\%	\|25v	\|capacitor	\|CF18A	
193	\|1	\|c1206-100n	1100n	\|10\%	125V	\|capacitor	\|CF1A	
194	11	\|c1206-100n	$1100 n$	110\%	125 V	\|capacitor	\|CF3A	
195	11	\|c1206-100n	$1100 n$	110\%	125 V	\|capacitor	\|CF7B	
196	11	\|c1206-100n	$1100 n$	110\%	125 V	\|capacitor	\|CF6B	
197	\|1	\|c1206-100n	1100 n	\|10\%	\|25v	\|capacitor	\|CF5B	
198	\|1	\|c1206-100n	1100 n	\|10\%	\|25V	\|capacitor	\|CF4B	
199	\|1	\|c1206-100n	1100 n	\|10\%	125V	\|capacitor	\|CF6A	
200	\|1	\|c1206-100n	1100n	\|10\%	125V	\|capacitor	\|CF4A	
201	\|1	\|c1206-100n	1100 n	\|10\%	125v	\|capacitor	\|CF7A	
202	\|1	\|c1206-100n	$1100 n$	\|10\%	125 V	\|capacitor	\|CF5A	
203	\|1	\|c1206-100n	1100 n	110\%	125V	\|capacitor	\|CF1B	
204	11	\|c1206-100n	1100 n	110\%	125 V	\|capacitor	\|CF2B	
205	11	\|c1206-100n	$1100 n$	110\%	125 V	\|capacitor	\|CF3B	
206	\|1	\|c1206-100n	1100n	\|10\%	\|25v	\|capacitor	\|CF18B	
207	11	\|c1206-220p	1220p	110\%	\|100V	\|capacitor	\|C25	
208	\|1	\|c1206-220p	1220p	110\%	\|100V	\|capacitor	\|C23	
209	\|1	\|c1206-220p	1220p	\|10\%	\|100V	\|capacitor	\|C26	
210	\|1	\|c1206-220p	1220p	\|10\%	\|100V	\|capacitor	\|C24	
211	\|1	\|c1206-270p	1270p	\|10\%	\|100V	\|capacitor	\|C22	
212	11	\|c1206-270p	1270p	110\%	\|100V	\|capacitor	\|C21	

Pag. 73

DLCD BOARD - DISPLAY DRIVER

DLCD BOARD- DISPLAY DRIVER

Pag. 75

DLCD BOARD - DISPLAY DRIVER

item	\|qty	\|part number	\|Val	\|Tol	\|Work	description		
1	11	\|AM29F010N	1	1	1	1	\|U2	
2	11	\|BAR10	I	I	1	\|diode	\|D6	
3	\|1	\|BAY21	I	1	I	Idiode	\|D4	
4	\|1	\|BAY21	,	1	I	\|diode	\|D5	
5	11	\|BC183	1	1	I	\|Transistor, NPN BJT	\|Q5	
6	\|1	\|BC183	1	1	I	\|Transistor, NPN BJT	126\|	
7	11	\|BC183	I	1	,	\|Transistor, NPN BJT	\|Q4	
8	11	\|BERG100M1X02V	1	1	I	\|	\|J3	
9	11	\|CCM 1n	11 n	15\%	I100V	\|capacitor	\|C40	COD
10	\|1	\|CCM 1 l	\|1u	120\%	I	\|capacitor	\|C15	COD
11	\|1	\|CCM_2u2	\|2u2	120\%	I	\|capacitor	\|C1	COD
12	11	\|CCM-2u2	12u2	120\%	I	\|capacitor	\|C12	COD
13	11	ICCM_2u2	12u2	120\%	I	\|capacitor	\|C13	COD
14	\|1	\|CCM_2u2	12u2	120\%	I	\|capacitor	\|C14	COD
15	\|1	\|CCM_2u2	12u2	120\%	I	\|capacitor	\| C20	COD
16	\|1	\|CCM_2u2	12u2	120\%	I	\|capacitor	\|CF1	COD
17	11	ICCM_2u2	\|2u2	120\%	1	\|capacitor	\|C31	COD
18	11	\|CCM_2u2	12u2	120\%	I	\|capacitor	\|C32	COD
19	\|1	/ $\mathrm{CCM}^{-2 \mathrm{~L}} 2$	\|2u2	120\%	I	\|capacitor	\|C33	COD
20	\|1	\|CCM_2u2	\|2u2	120\%	I	\|capacitor	\|C37	COD
21	\|1	\| $\mathrm{CCM}^{\text {- }} 2 \mathrm{u} 2$	\|2u2	120\%	I	\|capacitor	\|C38	COD
22	11	/ $\mathrm{CCM}^{\text {- }} 2 \mathrm{Lu} 2$	\|2u2	120\%	I	\|capacitor	\|C39	COD
23	\|1	\| $\mathrm{CCM}^{-2 \mathrm{u} 2}$	\|2u2	120\%	I	\|capacitor	\|C27	COD
24	\|1	/ $\mathrm{CCM}^{-2 \mathrm{~L}} 2$	\|2u2	120\%	I	\|capacitor	\|C14A	COD
25	11	\|CCM_2u2	\|2u2	120\%	I	\|capacitor	\|C32A	COD
26	11	/ $\mathrm{CCM}^{\text {- }} 2 \mathrm{Lu} 2$	\|2u2	120\%	I	\|capacitor	\|C32C	COD
27	11	\|CCM_2u2	12u2	120\%	1	\|capacitor	\|C32B	COD
28	\|1	\|CCM ${ }^{-10} 10$	110 n	110\%	I	\|capacitor	\|C2	COD
29	\|1	\| $\mathrm{CCM}^{-10 \mathrm{n}}$	110 n	\|10\%	I	\|capacitor	IC3\|COD	
30	11	ICCM_10n	110 n	\|10\%	I	\|capacitor	IC4\|COD	
31	11	$1 \mathrm{CCM}^{-10} \mathrm{n}$	110 n	\|10\%	I	\|capacitor	IC5\|COD	
32	\|1	ICCM_10n	110 n	110\%	I	\|capacitor	IC6\|COD	
33	\|1	\|CCM ${ }^{-10} 10$	110 n	\|10\%	I	\|capacitor	IC7\|COD	
34	11	\|CCM_10n	110 n	110\%	I	\|capacitor	\|C8	COD
35	\|1	ICCM_10n	110 n	110\%	I	\|capacitor	\|C9	COD
36	\|1	\| CCM $^{\text {- }}$ 27p	127p	15\%	I	\|capacitor	\|C10	COD
37	\|1	\|CCM_27p	127p	15\%	I	\|capacitor	\|C11	COD
38	\|1	/CCM ${ }^{-100} \mathrm{n}$	1100 n	\|10\%	I	\|capacitor	\|C16	COD
39	\|1	ICCM 100 n	$1100 n$	110\%	I	\|capacitor	\|C17	COD
40	\|1	\|CCM 100n	1100 n	110\%	I	\|capacitor	\|C18	COD
41	\|1	ICCM ${ }^{-100} \mathrm{n}$	1100 n	\|10\%	I	\|capacitor	\|CF3	COD
42	\|1	ICCM 100n	1100 n	110\%	I	\|capacitor	\|CF4	COD
43	\|1	/CCM ${ }^{-100} \mathrm{n}$	$1100 n$	110\%	I	\|capacitor	\|C22	COD
44	11	ICCM 100n	1100 n	110\%	I	\|capacitor	\|C23	COD
45	\|1	/CCM ${ }^{-100} \mathrm{n}$	1100 n	\|10\%	I	\|capacitor	\|C24	COD
46	\|1	ICCM 100n	$1100 n$	110\%	I	\|capacitor	IC26\|COD	
47	11	ICCM 100n	1100 n	110\%	,	\|capacitor	\|C25	COD
48	\|1	/CCM ${ }^{-100} \mathrm{n}$	$1100 n$	\|10\%	I	\|capacitor	\|CF19	COD
49	11	ICCM 100n	1100 n	110\%	I	\|capacitor	\|CF21	COD
50	11	/CCM ${ }^{-100} \mathrm{n}$	1100 n	\|10\%	I	\|capacitor	\|C28	COD
51	\|1	ICCM 100n	1100n	110\%	I	\|capacitor	\|CF2	COD
52	\|1	ICCM 100 n	1100 n	\|10\%	I	\|capacitor	ICF5 ${ }^{\text {c }}$	
53	\|1	ICCM_100n	$1100 n$	110\%	1	\|capacitor	\|CF6	COD
54	11	ICCM 100n	1100 n	110\%	I	\|capacitor	\|CF8	COD
55	\|1	/CCM ${ }^{-100} \mathrm{n}$	$1100 n$	\|10\%	I	\|capacitor	\|CF9	COD
56	\|1	ICCM 100n	1100 n	110\%	I	\|capacitor	\|CF22	COD
57	11	ICCM 100 n	1100 n	\|10\%	I	\|capacitor	\|C34	COD
58	11	ICCM 100 n	1100 n	110\%	I	\|capacitor	\|C35	COD
59	11	ICCM 100n	1100 n	110\%	I	\|capacitor	\|C36	COD
60	\|1	ICCM 100n	1100n	110\%	I	\|capacitor	\|CF20	COD
61	\|1	ICCM 100n	1100n	110\%	I	\|capacitor	\|CF10	COD
62	11	\| CEH -220u-16V	\|220uF	120\%	116 V	1	IC41\|COD	
63	\|1	\|CEV_10u-25	JuF	120\%	\|V	I	\|C19	
64	11	\|CEV_10u-25	\|10u	120\%	125v	1	\|C21	
65	\|1	\|CEV_10u-25	\|10u	120\%	\|25v	I	\|C29	
66	\|1	\|CEV_10u-25	\|10u	120\%	125 V	I	\|C30	
67	\|1	\|DS1302N	I	I	1	\|Real Time Clock	\|U21	
68	\|1	\|JFL_26M	,	I	I	\|Connector Flat 26 pins	\|J1	
69	11	\|JFL_26M	1	I	I	\|Connector Flat 26 pins	\|J2	
70	11	\|KEYBELCA1	I	1	I	1	\| 24	$^{\text {\| }}$
71	\|1	\|LF353N	I	I	I	\|Opamp 5-pin	\|U7	
72	11	\|LF353N	I	I	I	IOpamp 5-pin	\|U11	
73	11	\|LF353N	1	I	I	\|Opamp 5-pin	\|U13	
74	\|1	\|LM336_5V	15 V	1	1	\|Voltage Reference, ADJ.	\|U17	
75	\|1	\|LM358N	I	1	I	\|Opamp 5-pin	\|U16	
76	\|1	\|LM7805	I	I	I	\|Voltage Regulator, FIXED	\|U23	
77	\|1	\|L025_22u	I	I	I	\|inductor	\|L1	
78	\|1	\|MAX232N	I	I	I	\|Driver-Receiver RS232	\|U18	
79	\|1	\|MC68HC11K1	1	1	1	1 l	\|U1	

Pag. 76

	CXS	Davion
80	11	\|MC34064
81	\|1	\|M40247JY
82	11	\|NE5532N
83	11	\|NE5532N
84	11	\|NE5532N
85	11	\|PBATT_D16
86	11	\|REED1A 12 V
87	11	\|REED1A_12V
88	\|1	\|REED1A_12V
89	\|1	\|REED1A_12V
90	11	\|RSIP8C_10K
91	\|1	\|R025-J-1K0
92	\|1	\|R025-J-1K0
93	\|1	\|R025-J-1K0
94	11	\|R025-J-1K8
95	11	\|R025-J-1K8
96	\|1	\|R025-J-1R8
97	11	\|R025-J-2M2
98	\|1	\|R025-J-3k3
99	\|1	\|R025-J-4K7
100	11	\|R025-J-4K7
101	\|1	\|R025-J-4K7
102	\|1	\|R025-J-5K6
3	\|1	\|R025-J-5K6
4	11	\|R025-J-10K
5	\|1	\|R025-J-10K
06	\|1	\|R025-J-10K
107	\|1	\|R025-J-10K
108	11	\|R025-J-10K
109	11	\|R025-J-10K
110	11	\|R025-J-10K
111	\|1	\|R025-J-10K
112	\|1	\|R025-J-10K
113	\|1	\|R025-J-10K
114	\|1	\|R025-J-10K
115	\|1	\|R025-J-10M
6	\|1	\|R025-J-12K
117	\|1	\|R025-J-12K
118	\|1	\|R025-J-18K
9	11	\|R025-J-18K
2	11	\|R025-J-18K
21	11	\|R025-J-33K
122	11	\|R025-J-33K
123	\|1	\|R025-J-33K
124	\|1	\|R025-J-47K
125	11	\|R025-J-47K
126	\|1	\|R025-J-56K
127	11	\|R025-J-68K
28	11	\|R025-J-68K
9	\|1	\|R025-J-68K
-	\|1	\|R025-J-68K
1	11	\|R025-J-82R
32	\|1	\|R025-J-100K
3	\|1	\|R025-J-100R
34	\|1	\|R025-J-100R
35	\|1	\|R025-J-100R
136	11	\|R025-J-100R
137	\|1	\|R025-J-100R
138	\|1	\|R025-J-100R
139	\|1	\|R025-J-100R
140	\|1	\|R025-J-100R
141	\|1	\|R025-J-150K
142	11	\|R025-J-150K
143	11	\|R025-J-150K
144	11	\|R025-J-150K
145	\|1	\|R025-J-150K
146	11	\|R025-J-150K
147	11	\|R025-J-150K
148	\|1	\|R025-J-220R
149	\|1	\|R025-J-220R
150	\|1	\|R025-J-330R
151	\|1	\|R025-J-390K
152	\|1	\|R025-J-560R
153	\|1	\|R025-J-560R
154	\|1	\|R025-J-680R
155	\|1	\|R025-J-820R
156	11	\|SN75176N
157	11	\|SP_TM114
158	11	\|VP00610L
159	\|1	\|VP0610L
160	11	\|VP0610L
161	11	\|XT-HC49U
162	11	\|XT-TC38
163	\|1	\| 2 PD5V6
164	\|1	\| 2 PD5V6
165	11	\| 2 PD5V6
166	\|1	\|ZPD5V6
167	11	\| 2 PD5V6
168	\|1	\| 2 PD5V6

| 1 | 1 | 1 | 1 | \|U22| |
| :---: | :---: | :---: | :---: | :---: |
| 1 | I | I | 1 | \|LCD1| |
| 1 | 1 | I | IOpamp 5-pin | \|U12| |
| 1 | I | I | 1 Opamp 5-pin | \|U14| |
| 1 | I | I | \|Opamp 5-pin | \|U15| |
| I | I | I | \|Battery | \|BT1| |
| I | I | I | \|Bobina rele | \|RL2| |
| 1 | I | I | \mid RELAIS SPDT | \|RL2| |
| I | 1 | I | \|RELAIS SPDT | \|RL1| |
| I | 1 | I | \|BOBINA RELE | \|RL1| |
| \|10K | 15\% | I | 1 | \|RR1|COD |
| \|1к0 | 15\% | I | \|resistor | \|R46|COD |
| \|1K0 | 15\% | 1 | \|resistor | \|R47|COD |
| \|1к0 | 15\% | I | \|resistor | \|R49|COD |
| \|1K8 | 15\% | I | \|resistor | \|R54|COD |
| \|1K8 | 15\% | I | \|resistor | \|R45|COD |
| \|1R8 | 15\% | I | \|resistor | \|R55| |
| \|2M2 | 15\% | I | \|resistor | \|R21|COD |
| \|363 | 15\% | I | \|resistor | \|R50|COD |
| \| 4K7 | 15\% | I | \|resistor | \|R2 |COD |
| \| 4K7 | 15\% | 1 | \|resistor | \|R3|COD |
| \| 4K7 | 15\% | 1 | \|resistor | \|R33|COD |
| \|5K6 | 15\% | 1 | \|resistor | \|R34|COD |
| \|5K6 | 15\% | I | \|resistor | \|R35 |COD |
| \|10K | 15\% | 1 | \|resistor | \|R6|COD |
| \|10K | 15\% | I | \|resistor | \|R8|COD |
| \|10K | 15\% | 1 | \|resistor | $\mid \mathrm{R10}$ \|COD |
| \|10K | 15\% | 1 | \|resistor | \|R12 |COD |
| \|10K | 15\% | I | \mid resistor | \|R14|COD |
| \|10K | 15\% | I | \|resistor | \|R16|COD |
| \|10K | 15\% | I | \|resistor | \|R18|COD |
| \|10K | 15\% | 1 | \|resistor | \|R20|C |
| \|10K | 15\% | I | \|resistor | \|R29|COD |
| \|10K | 15\% | 1 | \|resistor | \|R56|COD |
| \|10K | 15\% | I | \|resistor | \|R64|COD |
| \|10M | 15\% | I | \|resistor | \|R65 |COD |
| \|12K | 15\% | 1 | \|resistor | \|R31|COD |
| \|12K | 15\% | I | \|resistor | \|R38|COD |
| \|18K | 15\% | I | \|resistor | \|R1|COD |
| \|18K | 15\% | 1 | \|resistor | \|R22 |COD |
| \|18K | 15\% | 1 | \|resistor | \|R63|COD |
| \|33K | 15\% | I | \|resistor | \|R32 |COD |
| \|33K | 15\% | I | \|resistor | \|R40|COD |
| 133K | 15\% | I | \|resistor | \|R41|COD |
| \|47K | 15\% | I | \mid resistor | \|R42 |COD |
| 147K | 15\% | I | \|resistor | \|R44|COD |
| \|56K | 15\% | 1 | \|resistor | \|R43|COD |
| 168K | 15\% | I | \|resistor | \|R28|COD |
| 168K | 15\% | I | \|resistor | \|R30|COD |
| 168K | 15\% | I | \|resistor | \|R37|COD |
| 168K | 15\% | I | \|resistor | \|R39|COD |
| \|82R | 15\% | 1 | \|resistor | \|R4|COD |
| \|100K | 15\% | 1 | \|resistor | \|R53|COD |
| \|100 | \|5\% | I | \mid resistor | \|R5|COD |
| \|100 | \|5\% | I | \|resistor | \|R7|COD |
| \|100 | 15\% | 1 | \|resistor | \|R9|COD |
| \|100 | 15\% | I | \|resistor | \|R11|COD |
| \|100 | 15\% | I | \|resistor | \|R13|COD |
| \|100 | 15\% | 1 | \|resistor | \|R15|COD |
| \|100 | 15\% | I | \|resistor | \|R17|COD |
| \|100 | \|5\% | I | \mid resistor | \|R19|COD |
| \|150K | 15\% | I | \|resistor | \|R23|COD |
| \|150K | 15\% | I | \|resistor | \|R25 |COD |
| \|150K | 15\% | 1 | \|resistor | \|R26|COD |
| \|150K | 15\% | 1 | \|resistor | \|R27|COD |
| \|150K | 15\% | I | \|resistor | \|R58|COD |
| \|150K | 15\% | I | \|resistor | \|R60|C |
| \|150K | 15\% | I | \|resistor | \|R61|COD |
| \|220R | 15\% | 1 | \|resistor | \|R51|COD |
| \|220R | 15\% | I | \mid resistor | \|R52|COD |
| \|330R | 15\% | 1 | \|resistor | \|R59|COD |
| 1390K | 15\% | 1 | \|resistor | \|R62 |COD |
| \|560R | 15\% | I | \|resistor | \|R24|COD |
| \|560R | 15\% | I | \|resistor | \|R57|COD |
| \| 680R | 15\% | I | \|resistor | \|R48|COD |
| \|820R | 15\% | I | \|resistor | \|R36|COD |
| 1 | 1 | I | \|Driver-Receiver R85 | \|U19| |
| 1 | 1 | 1 | 1 l | \|P9| |
| 1 | 1 | 1 | \|Mosfet, N-chan Power | \|Q2| |
| 1 | 1 | 1 | \|Mosfet, N-chan Power | IQ31 |
| 1 | 1 | 1 | \|Mosfet, N-chan Power | \|Q1| |
| \|MHz | 1 | I | \|Crystal | \|XT1| |
| 1 | I | I | \|Crystal TC38 | \|XT2| |
| 1 | 1 | 1 | \|zener diode | \|DZ2| |
| 1 | 1 | I | \| zener diode | \|DZ3| |
| I | 1 | I | \| zener diode | \|DZ4| |
| 1 | 1 | 1 | \|zener diode | \|DZ5| |
| , | I | 1 | \| zener diode | \|DZ6| |
| I | I | I | \| zener diode | \|DZ7| |
| 1 | 1 | I | \|zener diode | \|DZ8| |

\|zener diode	$\|D Z 1\|$
\|	$\|Z 1\|$
\|	$\|Z 2\|$
\|diode	$\|D 1\|$
\|diode	$\|D 2\|$
\|diode	$\|D 3\|$
\|Gate, 2-Input NAND	$\|U 10\|$
\|Gate, 2-Input NAND	$\|U 20\|$
\|Mux, 8-Bit	$\|U 9\|$
\|Mux, 8-Bit	$\|U 25\|$
\|Shift Register, 8-Bit	$\|U 8\|$
\|Transceiver, Octal 3-State	$\|U 5\|$
\|Transceiver, Octal 3-State	$\|U 6\|$
\|Latch, Octal D-Type 3-S	$\|U 3\|$
\|Latch, Octal D-Type 3-S	$\|U 4\|$

MBA BOARD - MOTHER BOARD

Pag. 79

MBA BOARD- MOTHER BOARD

Pag. 80

MBA BOARD - MOTHER BOARD

Pag. 81

MBA BOARD - MOTHER BOARD

MBA BOARD - MOTHER BOARD

item	\|qty	\|part number	\|Val	\|Tol	\|Work.	\|description		
1	11	\|BAR10	I	I	,	Idiode	\|D5 ${ }^{\text {\| }}$	
2	\|1	\|BAR10	I	I	I	Idiode	\|D2	
3	11	\|BAR10	1	I	I	\|diode	\|D4	
4	\|1	\|BAR10	I	,	I	\|diode	\|D3	
5	\|1	\|BAY21	I	,	I	\|diode	\|D6	
6	\|1	\|BAY21	1	I	I	\|diode	\|D7	
7	11	\|BC183	I	I	I	\|Transistor, NPN BJT	\|Q1	
8	11	\|BERG100M1X02V	I	,	I	\| Physical Connector	\|J4	
9	\|1	\|BERG100M1X03V	I	,	I	\| Physical Connector	\|J3	
10	\|1	\|BERG100M1X08V	I	I	I	1 l	\|J9	
11	\|1	\|BERG100M1X08V	I	I	1	I	\|J10	
12	\|1	\|BERG100M1X12V	I	I	I	I	\|J12	
13	\|1	\|BERG100M1x14V	1	1	I	1	\|J8	
14	11	\|CCM 1 ln	11 n	15\%	\|100V	\|capacitor	\|C58	
15	\|1	\|CCM ${ }^{-10}$	11u	120\%	,	\|capacitor	\|C59	
16	\|1	\|CCM_2u2	\|2u2	120\%	1	\|capacitor	\|C44	
17	\|1	\|CCM_2u2	\|2u2	120\%	1	\|capacitor	\|C45	
18	11	ICCM_2u2	12u2	120\%	I	\|capacitor	\|C46	
19	11	\|CCM_2u2	12u2	120\%	I	\|capacitor	\|C48	
20	\|1	\|CCM_2u2	\|2u2	120\%	I	\|capacitor	\|C43	
21	11	$1 \mathrm{CCM}^{-2 \mathrm{~L} 2}$	12u2	120\%	1	\|capacitor	\|C47	
22	11	\|CCM 2 L 2	\|2u2	120\%	I	\|capacitor	\|C72	
23	${ }^{11}$	\|CCM-68p	168p	15\%	I	\|capacitor	\|C23	
24	\|1	\| C CM_68p	168p	15\%	1	\|capacitor	\| C 24	
25	11	$1 \mathrm{CCM}^{-100} \mathrm{n}$	1100 n	\|10\%	1	\|capacitor	\|C53	
26	11	ICCM 100 n	1100 n	\|10\%	1	\|capacitor	\|C55	
27	\|1	ICCM ${ }^{-100} \mathrm{n}$	1100n	\|10\%	I	\|capacitor	\|C51	
28	11	/ $\mathrm{CCM}^{-1} 100 \mathrm{n}$	1100 n	\|10\%	1	\|capacitor	\|C52	
29	\|1	ICCM 100n	1100n	\|10\%	I	\|capacitor	\|C54	
30	\|1	\|CCM ${ }^{-100} \mathrm{n}$	1100 n	\|10\%	I	\|capacitor	\|C68	
31	\|1	\|CCM ${ }^{-100} \mathrm{n}$	1100n	\|10\%	I	\|capacitor	\|C69	
32	11	$1 \mathrm{CCM}^{-100} \mathrm{n}$	$1100 n$	110\%	1	\|capacitor	\|C70	
33	11	ICCM 100n	$1100 n$	110\%	1	\|capacitor	\|C71	
34	11	\|CCM 100n	1100 n	\|10\%	I	\|capacitor	\|C63	
35	\|1	\|CCM ${ }^{-100} \mathrm{n}$	1100n	\|10\%	I	\|capacitor	IC62\|	
36	11	\|CCM ${ }^{-100 \mathrm{n}}$	1100 n	\|10\%	1	\|capacitor	\|C60	
37	11	\|CCM ${ }^{-100}$ n	1100 n	\|10\%	1	\|capacitor	\|C64	
38	11	\|CCM 100 n	1100 n	\|10\%	I	\|capacitor	\|C65	
39	\|1	ICCM 100 n	1100 n	\|10\%	I	\|capacitor	\|C66	
40	11	/ $\mathrm{CCM}^{-100} \mathrm{n}$	1100 n	\|10\%	I	\|capacitor	\|C67	
41	11	ICCM 100n	1100 n	110\%	I	\|capacitor	\|C61	
42	\|1	\|CCM ${ }^{-100} \mathrm{n}$	\|100n	\|10\%	I	\|capacitor	\|CF23	COD
43	\|1	\|CCM ${ }^{-150 p}$	1150p	15\%	I	\|capacitor	\|C17	
44	\|1	\|CCM ${ }^{-150 p}$	\|150p	15\%	1	\|capacitor	\|C19	
45	\|1	\|CCM ${ }^{-150 p}$	1150p	15\%	1	\| capacitor	\|C18	
46	11	\|CCM ${ }^{-150 p}$	1150p	15\%	I	\|capacitor	\|C20	
47	\|1	\|CCM ${ }^{-150 p}$	1150p	15\%	I	\|capacitor	\|C21	
48	11	\|CCM ${ }^{-150 p}$	1150p	15\%	I	\|capacitor	\|C22	
49	11	/ CCM $^{-150}$ p	1150p	15\%	I	\|capacitor	\|C16	
50	\|1	\|CCM ${ }^{-150 p}$	1150p	15\%	I	\|capacitor	\|C15	
51	11	/ CCM $^{-1} 470 \mathrm{p}$	1470p	15\%	1	\|capacitor	\|C56	
52	11	\|CCM 470p	1470p	15\%	I	\|capacitor	\|C57	
53	\|1	\|CEV_10u-25v	\|10u	120\%	125v	I	\|C1	
54	11	\|CEV_10u-25v	110 u	120\%	125 V	1	\|C2	
55	11	ICEV_10u-25v	\|10u	120\%	125 V	1	\|C10	
56	11	\|CEV_10u-25v	110 u	120\%	125v	1	\|C9	
57	\|1	ICEV_10u-25v	\|10u	120\%	125V	I	\|C3	
58	11	\| $C E V^{-10 u-25 V}$	\|10u	120\%	125 V	1	\|C4	
59	11	\|CEV_10u-25v	110 u	120\%	125 V	I	\|C5	
60	\|1	\|CEV_10u-25v	\|10u	120\%	125 v	1	\|C12	
61	11	\|CEV_10u-25v	\|10u	120\%	125 V	I	\|C7	
62	\|1	ICEV_10u-25v	\|10u	120\%	125 v	1	\|C11]	
63	11	\|CEV_10u-25v	\|10u	120\%	125 V	I	\|C6	
64	\|1	ICEV_10u-25v	\|10u	120\%	125 v	1	\|C13	
65	11	\|CEV_10u-25v	\|10u	120\%	125 V	1	\|C8	
66	11	ICEV_47u-25v	147 u	120\%	125 V	1	\|C73	COD
67	11	\|CPVST_1n2_63V	\|1n2	\|10\%	163 V	\|capacitor	\|C26	
68	11	\| CPVST -6n8_63V	16 n 8	\|10\%	163 V	\|capacitor	\|C38	
69	11	\| $C P V S T$ _6n8_63V	16 n 8	\|10\%	163 V	\|capacitor	\|C31	
70	11	\|CPVST_6n8_63V	16 n 8	110\%	163 V	\|capacitor	\|C42	
71	11	\| $C P V S T$ _6n8_63V	16 n 8	\|10\%	163 V	\|capacitor	\|C32	
72	11	\| CPVST -6n8_63V	16 n 8	\|10\%	163 V	\|capacitor	\|C36	
73	\|1	\| $C P V S T$ _6n8_63V	16 n 8	\|10\%	163 V	\|capacitor	\|C33	
74	11	\| CPVST -6n8_63V	16 n 8	\|10\%	163 V	\|capacitor	\|C40	
75	11	\| $C P V S T$ _6n8_63V	16 n 8	\|10\%	163 V	\|capacitor	\|C39	
76	\|1	\|CPVST_6n8_63V	16 n 8	\|10\%	163 V	\|capacitor	\|C34	
77	11	\| $\mathrm{CPVST} \mathrm{C}^{-6 n 8-63 V}$	16 n 8	\|10\%	163 V	\|capacitor	\| 229	
78	\|1	\|CPVST_6n8_63V	16 n 8	\|10\%	163 V	\|capacitor	\|C35	
79	11	\| $\mathrm{CPVST} \mathrm{C}^{-6 n 8-63 V}$	16 n 8	\|10\%	163 V	\|capacitor	\|C37	
80	\|1	\|CPVST_6n8_63V	$16 n 8$	\|10\%	163 V	\|capacitor	\|C30	
81	\|1	\| CPVST -6n8_63V	16 n 8	\|10\%	163 V	\|capacitor	\|C41	
82	11	\| CPVST -6n8_63V	16 n 8	\|10\%	163 V	\|capacitor	\| $\mathrm{C28}$ \|COD	
83	\|1		$16 n 8$	\|10\%	163 V	\|capacitor	\|C27	COD
84	11	\|CPV_10 ${ }^{\text {n }}$ 1 100 V	110 n	110\%	I100V	\|capacitor	\|C49	

Pag. 83

97	11	\|LM7805
98	11	ILM7808

98	11	$\mid L M 7808$
99	11	$\mid L T U B E-D 8 P 5$

100 |1 |LTUBE-D8P5
101 |1 |LTUBE-D8P5
102 |1 |LTUBE-D8P5

103	$\mid 1$	$\mid L 030510 u$

105 |1 |REED1A-HS-12V
106 |1 |RT_67W
107 |1 |RT_67W
108 |1 |RT_67W

109	$\mid 1$	$\mid R T-67 \mathrm{~W}$
110	\|1	$\mid \mathrm{RT}-67 \mathrm{~W}$

111	$\mid 1$	$\mid R T _67 \mathrm{~W}$

112 |1 |RT-67W
113 |1 |R025-F-1K0
114 |1 |R025-F-1K0

115	$\mid 1$	\|R025-F-1K0
116	$\mid 1$	\|R025-F-1K0

$\mid 10 \mathrm{n}$	110%	$\mid 100 \mathrm{~V}$
1470 p	110%	$\mid 100 \mathrm{~V}$
1	\mid	\mid

| \|capacitor | \|C50| |
| :---: | :---: |
| \|capacitor | \|C25|COD |
| \|Multiplexer, Analog 8-Bit | \|U17| |
| \|Multiplexer, Analog 8-Bit | \|U18| |
| \|Connector Flat 26 pins | \|J1| |
| \|Connector Flat 26 pins | \|J2| |
| \|Connector Flat 26 pins | \|J7| |
| \|Connector Flat 26 pins | \|J11| |
| | \|J6| |
| 1 | \|J5| |
| \|Opamp 5-pin | \|U21| |
| \|Voltage Comparator | \|U22| |
| \|Voltage Regulator, FIXED | \| 0201 |
| \|Voltage Regulator, FIXED | \|U19| |
| \|inductor | \|L1| |
| \|inductor | \|L2| |
| \|inductor | \|L4| |
| \|inductor | \|L3| |
| \|inductor | \|L5] |
| \|BOBINA RELE | \|K1| |
| \|RELAIS SPDT | \|K1| |
| \|resistor | \|RT7| |
| \|resistor | \|RT2| |
| \|resistor | \|RT3| |
| \|resistor | \|RT1| |
| \|resistor | \|RT6| |
| \|resistor | \|RT5| |
| \|resistor | \|RT4| |
| \|resistor | \|R21| |
| \|resistor | \|R23| |
| \|resistor | \|R22] |
| \|resistor | \|R8| |
| \|resistor | \|R9| |
| \|resistor | \|R17| |
| \|resistor | \|R10| |
| \|resistor | \|R14| |
| \|resistor | \|R11| |
| \|resistor | \|R15| |
| \|resistor | \|R12| |
| \|resistor | \|R18| |
| \|resistor | \|R13| |
| \|resistor | \|R1| |
| \|resistor | \|R2| |
| \|resistor | \|R16| |
| \|resistor | \|R24| |
| \|resistor | \|R25 | |
| \|resistor | \|R6| |
| \|resistor | \|R7| |
| \|resistor | \|R77| |
| \|resistor | \|R78| |
| \|resistor | \|R71| |
| \|resistor | \|R72| |
| \|resistor | \|R75 | |
| \|resistor | \|R76| |
| \|resistor | \|R107|COD |
| \|resistor | \|R55| |
| \|resistor | \|R56| |
| \|resistor | \|R69| |
| \|resistor | \|R70| |
| \|resistor | \|R57| |
| \|resistor | \|R58| |
| \|resistor | \|R43| |
| \|resistor | \|R42| |
| \|resistor | \|R41| |
| \|resistor | \|R47 | |
| \|resistor | \|R45| |
| \|resistor | \|R44| |
| \|resistor | \|R29| |
| \|resistor | \|R30| |
| \|resistor | \|R31| |
| \|resistor | \|R32 | |
| \|resistor | \|R33| |
| \|resistor | \|R35| |
| \|resistor | \|R34| |
| \|resistor | \|R36| |
| \|resistor | \|R38| |
| \|resistor | \|R48| |
| \|resistor | \|R37| |
| \|resistor | \|R46| |
| \|resistor | \|R39 | |
| \|resistor | \|R40| |
| \|resistor | \|R102| |
| \|resistor | \|R101| |
| \|resistor | \|R103| |
| \|resistor | \|R104| |
| \|resistor | \|R3| |
| \|resistor | \|R105| |
| \|resistor | \|R5| |
| \|resistor |resistor | $\begin{aligned} & \text { \|R19\| } \\ & \text { \|R20\| } \end{aligned}$ |

Pag. 84
188 |1 |R025-F-10K0

189	\|1	\|R025-F-10K0
190	\|1	\|R025-F-15K

191 |1 |R025-F-18K
192 |1 |R025-F-18K0

193	\|1	\|R025-F-18K0
194	\|1	\|R025-F-18K0

195 |1 |R025-F-27K0
196 |1 |R025-F-33K
197 |1 |R025-F-33K

198	\|1	\|R025-F-33K0
199	\| 1	\|R025-F-33K0

200 |1 |R025-F-47R
201 |1 |R025-F-95K3
203 | 11 |R025-F-100K

204	$\mid 1$	\|R025-F-100K
205	$\mid 1$	$\mid R 025-F-100 \mathrm{~K}$

206 | 1 |R025-F-100K
208 |1 |R025-F-100K

209	\|1	\|R025-F-100R
210	\| 1	\|R025-F-100R

211 |1 |R025-F-100R
212 |1 |R025-F-120R

214 \|	1	\|R025-F-120R
2120 F-120R		

215 |1 |R025-F-150R
216 |1 |R025-F-243R
217 |1 |R025-F-243R

219	\|1	\|R025-F-330R
210	R025-F-330R	

220	I	\|R025-F-390R
221	I	\|R025-F-390R

222 |1 |R025-F-500R
223 |1 |R025-F-562R

224	$\mid 1$	$\mid R 025-F-562 R$
225	\|1	\|R025-F-680R

226 |1 |R025-F-768R
227 |1 |R025-F-768R

228	$\mid 1$	\|R025-F-822R
229	11	\|R025-F-825R

230 |1 |R025-F-825R

231	$\mid 1$	$\mid R 025-F-825 R$
232	$\mid 1$	$\mid R 025-F-825 R$

233 |1 |TIP127
234 |1 |TL072N
235 |1 |TL072N
236 |1 |TL072N
237 |1 |TLO72N
238 |1 |TL072N
240 |1 |TL072N

240	11	$\mid T L 072 N$

242 |1 |TL072N
243 |1 |TL072N
244 |1 |TLO72N
245 |1 |TL072N
246 |1 |TL072N
247 |1 |TL072N
248 |1 |TL072N
249 |1 |TL072N
250 |1 |VP0610L
251 |1 |VP0610L
252 |1 |ZPD8V2
253 |1 |ZPD12V
254 |1 |Z3-100
255 |1 |Z3-100

256	$\mid 1$	$\mid Z 3-P 100$
257	$\mid 1$	$\mid 1 N 4148$

| \|2M2 | 11\% | 1 | \|resistor | \|R94| |
| :---: | :---: | :---: | :---: | :---: |
| \|3K9 | \|1\% | I | \|resistor | \|R95| |
| 13к30 | \|1\% | I | \|resistor | \|R111|COD |
| \|5K6 | \|1\% | I | \|resistor | \|R96| |
| \|5K6 | \|1\% | I | \|resistor | \|R97| |
| \| 6 K 81 | \|1\% | I | \|resistor | \|R4|COD |
| \| 8K2 | \|1\% | I | \|resistor | \|R100| |
| 18K25 | 11\% | 1 | \|resistor | \|R82|COD |
| 110K | \|1\% | I | \|resistor | \|R85| |
| \|10K | \|1\% | I | \|resistor | \|R84| |
| \|10K | \|1\% | I | \|resistor | \|R83| |
| \|10K | \|1\% | I | \|resistor | \|R81| |
| 110K0 | 11\% | I | \|resistor | \|R113|COD |
| 110K0 | \|1\% | I | \|resistor | \|R114|COD |
| \|10K0 | \|1\% | 1 | \|resistor | \|R115|COD |
| \|15K | \|1\% | I | \|resistor | \|R89 | |
| \|18K | \|1\% | I | \|resistor | \|R99 | |
| \|18K0 | \|1\% | 1 | \|resistor | \|R120|COD |
| \|18K0 | \|1\% | I | \|resistor | \|R119|COD |
| \|18K0 | \|1\% | I | \|resistor | \|R110|COD |
| \|27K4 | \|1\% | I | \|resistor | \|R98|COD |
| \|33K | \|1\% | I | \|resistor | \|R93| |
| \|33K | \|1\% | I | \|resistor | \|R92 | |
| 133K0 | \|1\% | I | \|resistor | \|R109|COD |
| \|33K0 | \|1\% | 1 | \|resistor | \|R112|COD |
| \|47R | \|1\% | I | \|resistor | \|R91| |
| \|95K3 | \|1\% | I | \|resistor | \|R53| |
| \|95K3 | \|1\% | 1 | \|resistor | \|R54| |
| \|100K | \|1\% | I | \|resistor | \|R73| |
| \|100K | \|1\% | I | \|resistor | \|R74| |
| \|100K | \|1\% | I | \|resistor | \|R117|COD |
| \|100K | \|1\% | I | \|resistor | \|R116|COD |
| \|100K | \|1\% | I | \|resistor | \|R118|COD |
| \|100R | \|1\% | I | \|resistor | \|R51| |
| \|100R | \|1\% | I | \|resistor | \|R52| |
| \|100R | \|1\% | I | \|resistor | \|R49| |
| \|100R | \|1\% | I | \|resistor | \|R50| |
| \|120R | \|1\% | I | \|resistor | \|R26| |
| \|120R | \|1\% | I | \|resistor | \|R27| |
| \|120R | \|1\% | I | \|resistor | \|R28| |
| \|150R | \|1\% | 1 | \|resistor | \|R108|COD |
| \|243R | \|1\% | I | \|resistor | \|R59| |
| \|243R | \|1\% | I | \|resistor | \|R60| |
| \|330R | \|1\% | I | \|resistor | \|R87| |
| \|330R | 11\% | 1 | \|resistor | \|R88| |
| \|390R | \|1\% | I | \|resistor | \|R79| |
| \|390R | \|1\% | I | \|resistor | \|R80| |
| \|500R | 11\% | I | \|resistor | \|R86| |
| \|562R | \|1\% | I | \|resistor | \|R61| |
| \|562R | 11\% | 1 | \|resistor | \|R62 | |
| \| 680R | \|1\% | I | \|resistor | \|R90| |
| 1768R | \|1\% | I | \|resistor | \|R63| |
| \|768R | 11\% | 1 | \|resistor | \|R64| |
| 1822R | 11\% | I | \|resistor | \|R106|COD |
| \| 825R | \|1\% | I | \|resistor | \|R65 | |
| \|825R | \|1\% | I | \|resistor | \|R66| |
| \|825R | \|1\% | I | \|resistor | \|R68| |
| \| 825R | \|1\% | I | \|resistor | \|R67| |
| , | , | I | \|Transistor, PNP Darlington | 1821 |
| 1 | I | I | IOpamp 5-pin | \|U1| |
| I | I | I | IOpamp 5-pin | \|U2| |
| 1 | I | I | IOpamp 5-pin | \|U3| |
| 1 | I | I | IOpamp 5-pin | \|U4| |
| I | 1 | I | IOpamp 5-pin | \|U5| |
| 1 | I | I | $10 \mathrm{pamp} 5-\mathrm{pin}$ | \|U6| |
| I | I | I | IOpamp 5-pin | \|U7| |
| 1 | I | I | IOpamp 5-pin | \| 681 |
| I | I | I | IOpamp 5-pin | \|U9| |
| 1 | I | 1 | IOpamp 5-pin | \| 0101 |
| 1 | I | I | IOpamp 5-pin | \| 011 | |
| I | I | I | IOpamp 5-pin | \|U12| |
| 1 | I | I | IOpamp 5-pin | \|U13| |
| I | I | I | IOpamp 5-pin | \|U15| |
| 1 | I | I | IOpamp 5-pin | \|U14| |
| I | , | I | IOpamp 5-pin | \|U16| |
| I | I | I | \|Mosfet, N-chan Power | \|Q4| |
| I | I | 1 | \|Mosfet, N-chan Power | \|Q31 |
| I | 1 | I | \| zener diode | \|DZ2|COD |
| I | 1 | 1 | \| zener diode | \|DZ1|COD |
| I | I | , | I | \|Z1| |
| I | 1 | I | 1 | \| 22 | |
| I | I | I | , | \| 231 |
| | 1 | I | Idiode | \|D1| |
| I | 1 | 1 | \|Gate, 2-Input NAND | \|U23| |

12 M 2	11%	1
13 K 9	11%	1

KEY BOARD - KEY

Pag. 86

KEY BOARD - KEY

Pag. 87

KEY BOARD - KEY

item	\|qty	\|part number	\|Val	\|Tol	\|Work.Volt.	description		
1	11	\|BERG100M2X07V	1	1	1 \|Physical Connector	\|J1		
2	11	\|LED_D3V	I	I	\|	photoemissive diode	\|DL3	
3	11	\|LED_D3V	I	1	I \|photoemissive diode	\|DL2		
4	11	\|RSIP8C_10K	\|10K	15\%	1 I	\|RR1		
5	11	\|SP_3FT	I	1	11	\|P1		
6	11	\|SP_3FT	I	I	1 I	\|P2		
7	11	\|SP_3FT	I	1	I	\|P3		
8	11	\|SP_3FT	I	1	1	\|P4		
9	11	\|SP_3FT	I	1	1 I	\|P5		
10	11	\|SP_3FT	I	I	I	\|P6		
11	11	\|SP_3FT	I	I	I	\|P8		
12	11	\|SP_3FTL	I	1	1 I	\|P7DL1		
13	11	\|SP_3FTL	1	1	1 \|photoemissive diode	\|P7DL1		

SINTD BOARD- VCO OSCILLATOR

Pag. 89

SINTD BOARD - VCO OSCILLATOR

Pag. 90

SINTD BOARD - VCO OSCILLATOR

item	\|qty	\|part number	\|Val	\|Tol	\|Work	\|description		
1	\|1	\|BCW31	1	I	I	\|Transistor, NPN BJT	IQ2\|	
2	11	\|BCW72	1	1	I	\|Transistor, NPN BJT	\|Q3	
3	11	\|BERG100M1X14V	1	1	I	I	\|J2	
4	\|1	\|BFR92	1	I	I	\|Transistor, NPN BJT	\|Q7	
5	11	\|BFR92	1	I	I	\|Transistor, NPN BJT	\|Q5	
6	\|1	\|BFR92	I	I	I	\|Transistor, NPN BJT	\|Q4	
7	11	\|CEV_100u-35V	\|100u	120\%	\|35V	1	\|C19	
8	11	\|CEV_100u-35V	\|100u	120\%	135 V	1	\|C16	
9	11	\|CEV_100u-35V	\|100u	120\%	135 V	I	\|C15	
10	11	\|CEV_100u-35v	\|100u	120\%	135 V	I	\|C17	
11	11	\|CEV_100u-35V	\|100u	120\%	135V	I	\|C21	
12	11	\| Coax	1	1	I	\| Coaxial Line	\|Coax1	
13	\|1	\|C1210	11 n	120	I	\|capacitor	\|C38	
14	11	\| C1210	$11 n$	120	I	\|capacitor	\|C26	
15	11	\|C1210	$11 n$	120	I	\|capacitor	\|C27	
16	11	\|C1210	$11 n$	120	I	\|capacitor	\|C34	
17	11	\| C1210	$11 n$	120	I	\|capacitor	\|C28	
18	11	\| C1210	11 n	120	I	\|capacitor	\|C35	
19	11	\|C1210	11 n	120	I	\|capacitor	\|C39	
20	11	\|C1210	11 n	120	I	\|capacitor	\|C40	
21	11	\|C1210	$11 n$	120	I	\|capacitor	\|C29	
22	11	\|C1210	$11 n$	120	I	\|capacitor	\|C41	
23	11	\| C1210	11 n	120	I	\|capacitor	\|C24	
24	11	\|C1210	11 n	120	I	\|capacitor	\|C36	
25	11	\| C1210	11 n	120	I	\|capacitor	\|C31	
26	11	\|C1210	$11 n$	120	I	\|capacitor	\|C42	
27	\|1	\| C1210	11 n	120	I	\|capacitor	\|C25	
28	11	IC1210	11 n	120	I	\|capacitor	\|C32	
29	11	\|C1210	$11 n$	120	I	\|capacitor	\|C30	
30	11	\|C1210	$11 n$	120	I	\|capacitor	\|C55	
31	11	\| C1210	11 n	120	I	\|capacitor	\|C56	
32	11	\| C1210	11 n	120	I	\|capacitor	\|C57	
33	11	\| C1210	11 n	120	I	\|capacitor	\|C2	
34	11	\|C1210	11 n	120	I	\|capacitor	\|C51	
35	11	\|C1210	11 n	120	I	\|capacitor	\|C33	
36	11	\| C1210	$11 n$	120	I	\|capacitor	\|C58	
37	11	\|C4016BD	1	I	I	\|Analog Switch, Bilateral	\|U13	
38	11	\|DROP	1	I	I	I	\|Z1	
39	11	\| HSS2800	1	I	I	\| diode	\|D3	
40	11	\| HSS2800	1	I	I	\|diode	\|D5	
41	11	\| HSS2800	1	I	1	\|diode	\|D4	
42	11	\|LF353D	1	I	1	\|Opamp 5-pin	\|U2	
43	11	\|LL4148	1	I	I	\|diode	\|D7	
44	\|1	\|LL4148	1	I	1	\|diode	\|D6	
45	11	\|LL4148	1	I	I	\|diode	\|D1	
46	11	\|LL4148	1	I	I	Idiode	\|D2	
47	11	\|LMX2306D	1	I	I	I	\|U4	
48	11	\|LM358D	1	I	1	IOpamp 5-pin	\|U6	
49	\|1	\|LM358D	I	I	I	\|Opamp 5-pin	\|U7	
50	11	\|L1812_1mH	\| 1mH	1	I	\|inductor	\|L3	
51	11	\|L1812_2u2H	\|2u2H	I	1	\|inductor	\|L2	
52	11	\|L1812_6u8H	16u8H	1	I	\|inductor	\|L1	
53	11	\|MAV1_2-16_DIA300	11.6-16 pF	1\%	I	\|capacitor	\|CV1	
54	11	\|MAV11	1	I	1	I	\|U3	
55	11	\|MAV11	1	I	I	I	\|U14	
56	11	\|MMBFJ310LT1	1	I	1	\|JFET, N-chan	\|Q1	
57	11	\|MMBR571LT1	I	1	I	\|Transistor, NPN BJT	\|Q6	
58	11	\|MMBV109LT1	126-32 pF	1	I	\|Varactor	\|DV1	
59	11	\|MMBV109LT1	126-32 pF	1	I	\|Varactor	\|DV2	
60	11	\|MMBV109LT1	126-32 pF	1	I	\|Varactor	\|DV3	
61	11	\|MMBV109LT1	126-32 pF	1	I	\|Varactor	\|DV4	
62	11	\|MMBV109LT1	\|26-32 pF	1	I	\|Varactor	\|DV5	
63	11	\|MMBV109LT1	126-32 pF	1	I	\|Varactor	\|DV6	
64	11	\|MMBV109LT1	126-32 pF	1	I	\|Varactor	\|DV7	
65	\|1	\|MMBV109LT1	\|26-32 pF	1	I	\|Varactor	\|DV8	
66	11	\|MMBV109LT1	126-32 pF	1	1	\|Varactor	\|DV9	
67	11	\|RCH 895	1 uH	1	I	\|inductor	\|L4	
68	11	\|RT_3314J	1500	110\%	I	\|resistor	\|RT1	
69	11	\|R1206-F-42K0	\| 42 KO	\|1\%	I	\|resistor	\|R30	COD
70	11	\|R1206-J-1K0	\|1K0	15\%	I	\|resistor	\|R3	
71	\|1	\|R1206-J-1K0	\|1K0	15\%	I	\|resistor	\|R5	

Pag. 91

1510 N					
162	11	\|c1206-100n	1100n	\|10\%	125V
163	11	\|c1206-100n	1100 n	110\%	125V
164	11	\|c1206-100n	1100 n	\|10\%	\|25V
165	11	\|c1206-100n	1100n	\|10\%	125V
166	11	\|c1206-100n	1100 n	\|10\%	125 V
167	11	\|c1206-100n	1100n	\|10\%	125V
168	11	\|c1206-100n	1100n	\|10\%	125 V
169	11	\|c1206-150p	1150p	\|10\%	\|100V
170	11	\|c1206-150p	1150p	\|10\%	\|100V
171	11	\|c1206-220n	1220n	\|10\%	\|15V
172	11	\|c1206-470n	$1470 n$	\|10\%	\|15V
173	11	\|c1206-470n	$1470 n$	\|10\%	\|15V
174	11	74HC08			

|capacitor
|Gate, 2-Input AND
$|C 6|$
$|C 10|$
$|C 7|$
$|C 5|$
$|C 9|$
$|C 3|$
$|C 52| C O D$
$|C 49|$
$|C 48|$
$|C 23|$
$|C 22|$
$|C 43| C O D$
$|U 1|$

Pag. 93

DMPX BOARD - STEREOCODER

DMPX BOARD - STEREOCODER

Pag. 95

DMPX BOARD - STEREOCODER

item	\|qty	\| part number	\|Val	\|Tol		\|description		
1	\|1	\|BERG100M1X08V	I	I	I	,	\|J1	
2	\|1	\|BERG100M1X08V	I	I	1	I	\|J2	
3	11	\|C4011BD	I	1	1	\|Gate, 2-Input NAND	\|U1	
4	\|1	\|C4011BD	I	I	I	\|Gate, 2-Input NAND	\|U21	
5	11	IC4011BD	I	I	1	\|Gate, 2-Input NAND	\|U7	
6	11	\|C4011BD	I	I	1	\|Gate, 2-Input NAND	\| U12	$^{\text {\| }}$
7	\|1	\|C4013BD	1	I	I	\|Flip-Flop, D-Type	\| 48	
8	\|1	\|C4013BD	I	I	1	\|Flip-Flop, D-Type	\| U13	$^{\text {\| }}$
9	\|1	\|C4017BD	I	I	1	\|Counter/Divider, Decade	\|U6	
10	\|1	\|C4017BD	1	1	1	\|Counter/Divider, Decade	\| $\mathrm{U11}$ \|	
11	\|1	\|C4029BD	I	1	1	I	\|U23	
12	11	IC4029BD	I	I	1	I	\|U5	
13	\|1	IC4040BD	I	I	1	\|Counter, 12-Stage	\| U 2	
14	11	IC4051BD	1	1	1	\|Multiplexer, Analog 8-Bit	\|U3	
15	\|1	\|C4051BD	I	I	1	\|Multiplexer, Analog 8-Bit	\|U4	
16	\|1	\|C4051BD	I	I	1	\|Multiplexer, Analog 8-Bit	\|U9	
17	11	\|C4051BD	I	I	1	\|Multiplexer, Analog 8-Bit	\| $010 \mid$	
18	\|1	\|C4051BD	I	1	1	\|Multiplexer, Analog 8-Bit	\| 0151	
19	\|1	\|C4051BD	I	I	1	\|Multiplexer, Analog 8-Bit	\| U20	$^{\text {l }}$
20	11	\|LL4148	I	1	1	\|diode	\|D1	
21	\|1	\|LL4148	,	,	1	\|diode	\|D2	
22	\|1	\|RT_3314J	\|1K	110\%	1	\|resistor	\|RT1	
23	\|1	\|RT_3314J	1100	110\%	I	\|resistor	\|RT3	
24	11	\|RT_3314J	110K	110\%	1	\|resistor	\|RT2	
25	\|1	\|R1206-F-1K0	\|1K0	11\%	1	\|resistor	\|R43	
26	\|1	\|R1206-F-1K3	\|1K3	11\%	1	\|resistor	\|R47	
27	11	\|R1206-F-1K8	\|1K8	11\%	1	\|resistor	\|R34	
28	\|1	\|R1206-F-2K2	\|2K2	\|1\%	I	\|resistor	\|R27	
29	\|1	\|R1206-F-2K2	\|2K2	\|1\%	1	\|resistor	\|R28	
30	\|1	\|R1206-F-2K2	\|2K2	11\%	I	\|resistor	\|R39	
31	11	\|R1206-F-2K2	\|2K2	\|1\%	1	\|resistor	\|R33	
32	\|1	\|R1206-F-2K2	\|2K2	11\%	1	\|resistor	\|R31	
33	11	\|R1206-F-2K7	\|2K7	11\%	1	\|resistor	\|R40	
34	11	\|R1206-F-2K7	\|2K7	11\%	1	\|resistor	\|R10	
35	\|1	\|R1206-F-2M2	\| 2 M 2	11\%	1	\|resistor	\|R46	
36	11	\|R1206-F-8K2	\| 8K2	11\%	1	\|resistor	\|R23	
37	\|1	\|R1206-F-8K2	\|8K2	\|1\%	1	\|resistor	\|R49	
38	11	\|R1206-F-10K	110K	\|1\%	1	\|resistor	\|R41	
39	\|1	\|R1206-F-10K	\|10K	\|1\%	1	\|resistor	\|R50	
40	11	\|R1206-F-10K	110K	\|1\%	1	\|resistor	\|R22	
41	\|1	\|R1206-F-10K	110K	11\%	1	\|resistor	\|R48	
42	11	\|R1206-F-10K	\|10K	11\%	1	\|resistor	\|R42	
43	11	\|R1206-F-51R	\|51R	11\%	1	\|resistor	\|R30	
44	\|1	\|R1206-F-68R	\| 68R	\|1\%	1	\|resistor	\|R36	
45	11	\|R1206-F-68R	\| 68R	11\%	1	\|resistor	\|R37	
46	\|1	\|R1206-F-68R	\| 68R	\|1\%	1	\|resistor	\|R21	
47	11	\|R1206-F-68R1	\| 68R1	\|1\%	1	\|resistor	\|R2	
48	11	\|R1206-F-100K	\|100K	11\%	1	\|resistor	\|R32	
49	\|1	\|R1206-F-100R	\|100R	\|1\%	I	\|resistor	\|R20	
50	11	\|R1206-F-100R	\|100R	11\%	1	\|resistor	\|R45	
51	\|1	\|R1206-F-100R	\|100R	11\%	1	\|resistor	\|R44	
52	11	\|R1206-F-100R	\|100R	11\%	1	\|resistor	\|R26	
53	\|1	\|R1206-F-100R	\|100R	11\%	1	\|resistor	\|R29	
54	11	\|R1206-F-100R	\|100R	\|1\%	1	\|resistor	\|R24	
55	11	\|R1206-F-100R	\|100R	11\%	1	\|resistor	\|R35	
56	11	\|R1206-F-100R	\|100R	11\%	I	\|resistor	\|R38	
57	11	\|R1206-F-162R	\|162R	\|1\%	1	\|resistor	\|R19	
58	11	\|R1206-F-162R	\|162R	11\%	1	\|resistor	\|R12	
59	11	\|R1206-F-180R	\|180R	11\%	1	\|resistor	\|R1	
60	\|1	\|R1206-F-200R	\|200R	\|1\%	1	\|resistor	\|R3	
61	11	\|R1206-F-324R	\| 324R	\|1\%	1	\|resistor	\|R4	
62	11	\|R1206-F-432R	\| 432R	11\%	1	\|resistor	\|R5	
63	11	\|R1206-F-453R	\| 453R	11\%	1	\|resistor	\|R18	
64	11	\|R1206-F-453R	\| 453R	11\%	1	\|resistor	\|R13	
65	\|1	\|R1206-F-500R	\|500R	\|1\%	1	\|resistor	\|R25	
66	11	\|R1206-F-536R	\|536R	11\%	1	\|resistor	\|R6	
67	11	\|R1206-F-604R	\| 620K	11\%	1	\|resistor	\|R7	
68	11	\|R1206-F-649R	\|649R	11\%	1	\|resistor	\|R8	
69	11	\|R1206-F-681R	\| 681R	11\%	1	\|resistor	\|R9	
70	11	\|R1206-F-681R	\| 681R	11\%	1	\|resistor	\|R17	
71	11	\|R1206-F-681R	\| 681R	11\%	1	\|resistor	\|R14	
72	\|1	\|R1206-F-806R	\|806R	11\%	1	\|resistor	\|R16	

Pag. 96

BRONOCASTEGE DSIISION								
73	11	\|R1206-F-806R	\|806R	11\%	I	\|resistor	\|R15	
74	11	\|TAJ_10u-25V	\|10u	120\%	125 V	\|	\|C4	
75	11	\|TAJ_10u-25V	\|10u	120\%	125 V	I	\|C8	
76	11	\|TAJ_10u-25V	110u	120\%	125 V	1	\|C14	
77	11	\|TAJ_10u-25V	\|10u	120\%	125 V	I	\|C17	
78	11	\|TAJ_10u-25V	\|10u	120\%	125 V	I	\|C20	
79	11	\|TAJ_10u-25V	\|10u	120\%	125 V	I	\|C21	
80	11	\|TAJ_10u-25V	\|10u	120\%	125 V	1	\|C9	
81	11	\|TAJ_10u-25V	\|10u	120\%	125V	1	\|C7	
82	11	\|TL072D	1	1	1	IOpamp 5-pin	\| U14	
83	11	\|TL072D	1	1	1	IOpamp 5-pin	\|U16	
84	11	\|TL072D	1	I	1	IOpamp 5-pin	\|U19	
85	11	\|TL072D	1	1	I	IOpamp 5-pin	\|U22	
86	11	\| TZBX4	122p	15\%	I	\|capacitor	\|C22	
87	11	\|XT-HC49U	1 MHz	1	1	\|Crystal	\|XT1	
88	11	\|c1206-10p	110p	110\%	\|100V	\|capacitor	\|C3	
89	11	\|c1206-10p	110p	110\%	\|100V	\|capacitor	\|C18	
90	11	\| c1206-22p	122p	110\%	\|100V	\|capacitor	\|C2	
91	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF2	
92	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	$\|C F 2 A\|$	
93	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF1A	
94	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF1	
95	11	\|c1206-100n	$1100 n$	110\%	125 V	\|capacitor	\|CF6	
96	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF6A	
97	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF11	
98	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF11A	
99	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF23	
100	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF23A	
101	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF10	
102	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF10A	
103	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF9 ${ }^{\text {\| }}$	
104	11	\|c1206-100n	1100 n	110\%	125 V	\|capacitor	$\|C F 9 A\|$	
105	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF8	
106	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	$\|C F 8 A\|$	
107	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF5	
108	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF5A	
109	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF4	
110	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	$\mid \mathrm{CF} 4 \mathrm{~A}$ \|	
111	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF3	
112	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF3A	
113	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF7	
114	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	$\|C F 7 A\|$	
115	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF20	
116	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF20A	
117	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF21	
118	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF21A	
119	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF13	
120	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF13A	
121	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF12	
122	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF12A	
123	11	\|c1206-100n	1100 n	110\%	125 V	\|capacitor	\|CF15A	
124	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|CF15	
125	11	\|c1206-100p	\|100p	110\%	\|100V	\|capacitor	\|C1	
126	11	\|c1206-100p	\|100p	110\%	\|100V	\|capacitor	\|C15	
127	11	\|c1206-100p	\|100p	110\%	\|100V	\|capacitor	\|C5	
128	11	\|c1206-100p	\|100p	110\%	\|100V	\|capacitor	\|C19	
129	11	\|c1206-150p	\|150p	110\%	\|100V	\|capacitor	\|C16	
130	11	\|c1206-150p	\|150p	110\%	\|100V	\|capacitor	\|C26	
131	11	\|c1206-150p	\|150p	110\%	\|100V	\|capacitor	\|C25	
132	11	\|c1206-150p	\|150p	110\%	\|100V	\|capacitor	\|C6	
133	11	\|c1206-150p	\|150p	110\%	\|100V	\|capacitor	\|C24	
134	11	\|c1206-150p	\|150p	110\%	\|100V	\|capacitor	\|C23	

Pag. 97
$\longrightarrow \quad$ TX50S manua

AGC BOARD- AUDIO AUTOMATIC GAIN CONTROL

Pag. 98

AGC BOARD - AUDIO AUTOMATIC GAIN CONTROL

Pag. 99

AGC BOARD - AUDIO AUTOMATIC GAIN CONTROL

Pag. 100

1	I	I	\|Opamp 5-pin
\| MHz	1	1	\|Crystal
\| MHz	I	I	\|Crystal
1	1	I	\| zener diode
1	I	I	I
133p	\|10\%	\|100V	\|capacitor
133p	110\%	\|100V	\|capacitor
\|100n	110\%	125 V	\|capacitor
$1100 n$	110\%	125 V	\|capacitor
$1100 n$	110\%	125 V	\|capacitor
$1100 n$	110\%	125 V	\|capacitor
$1100 n$	\|10\%	125 V	\|capacitor
$1100 n$	110\%	125 V	\|capacitor
$1100 n$	110\%	125 V	\|capacitor
1100 n	\|10\%	125 V	\|capacitor
1100 n	110\%	125 V	\|capacitor
$1100 n$	\|10\%	125 V	\|capacitor
$1100 n$	110\%	125 V	\|capacitor
$1100 n$	\|10\%	125 V	\|capacitor
$1100 n$	110\%	125 V	\|capacitor
\|100n	\|10\%	125 V	\|capacitor
1100 n	110\%	125 V	\|capacitor
$1470 n$	\|10\%	115 V	\|capacitor
$1470 n$	110\%	115 V	\|capacitor

$|U 9|$
$|X T 1 A|$
$|X T 1|$
$|D Z 1| C O D$
$|Z 1|$
$|C 2| C O D$
$|C 1| C O D$
$|C F 2| C O D$
$|C F 2 A| C O D$
$|C F 4| C O D$
$|C F 5| C O D$
$|C F 5 A| C O D$
$|C F 3| C O D$
$|C F 3 A| C O D$
$|C 4| C O D$
$|C F 7| C O D$
$|C F 7 A| C O D$
$|C F 9 A| C O D$
$|C F 9| C O D$
$|C F 8 A| C O D$
$|C F 8| C O D$
$|C F 4 A| C O D$
$|C 3| C O D$
$|C 5| C O D$

CON BOARD - MBA / RFDC CONNECTION

Pag. 102

CON BOARD - MBA / RFDC CONNECTION

Item	\|qty	\|part number	\|Val	\|Tol		\|description		
1	11	\|CCM 100n	\|100n	110\%	I	\|capacitor	\|C1	
2	11	\|CCM 100 n	1100n	110\%	1	\|capacitor	\|C2	
3	11	\|CCM 100n	1100n	110\%	1	\|capacitor	\|C3	
4	11	\|J156x10	I	I	1	,	\|J1	
5	11	\|PAD_160x140	1	1	1	\| Pin Wire	\|W1	
6	11	\| PAD_160x140	I	I	1	\| Pin Wire	\|W2	
7	11	\| PAD_160x140	,	I	1	\| Pin Wire	\|W3	
8	11	\| PAD_160x140	I	I	1	\| Pin Wire	\|W4	
9	11	\| PAD_160x140	I	I	1	\| Pin Wire	\|W5	
10	11	\| PAD_160x140	,	I	1	\| Pin Wire	\|W6	
11	11	\|TIP122	1	1	1	\|Transistor, NPN Darlington	\|21	

40WN BOARD - RF POWER MODULE

Pag. 105

40WN BOARD- RF POWER MODULE

40WN BOARD - RF POWER MODULE

item	\|qty	\|part number
1	\|1	\|BFQ68
2	\|1	\| BFR96
3	116	\| CSMD-HQ
4	\| 9	\| C1210
5	\| 1	\|DU2860U
6	11	\| LCS_ELCA1
7	11	\| LCS_ELCA2
8	\| 1	\|LCS_ELCA3
9	\| 2	\|LL4148
10	\|1	\|L_VK200_P600
11	\|1	\|L_2SP_5D_2L
12	\| 1	\|L_2SP_5D_6L
13	\| 1	\|L_2SP_7D_3L
14	12	1 L
15	11	\|L_6SP_8D_12L
16	\|1	\|L_6SP_8D_15L
17	\| 1	\|L_6SP_8D_18L
18	\| 1	$1 \mathrm{~L}^{-} 8 \mathrm{SP} \mathrm{C}^{-} 8 \mathrm{D}$-8L
19	\| 1	
20	\| 2	\| 11812
21	\| 4	\| PAD_160x140
22	\| 2	\|RT $\overline{3} 314 \mathrm{~J}$
23	\|1	\|R1206-J-5K6
24	\| 1	\|R1206-J-10R
25	\| 1	\|R1206-J-15R
26	\| 1	\|R1206-J-56R
27	\| 1	\|R1206-J-100R
28	\| 1	\|R1206-J-270R
29	\| 2	\|R1206-J-470R
30	\| 2	\|R1206-J-680R
31	\| 14	\|R2512
32	\| 1	\| SMB-A
33	\| 1	\| TAJ_10u-25V
34	\| 1	\| ZMM5 ${ }^{\text {V }} 6$
35	11	\|c1206-33p
36	12	\|c1206-47p
37	\| 1	\|c1206-56p
38	\|1	\|c1206-68p
39	\| 4	\|c1206-100n
40	\| 2	\|c1206-100p
41	\| 1	\|c1206-150p

RFDC BOARD - DIRECTIONAL COUPLER

Pag. 108

RFDC BOARD - DIRECTIONAL COUPLER

RFDC BOARD - DIRECTIONAL COUPLER

item	\|qty	\| part number	\|Val	\|Tol	\|Work.	description		
1	\|1	\|BNC-A	I	\|	I	\|BNC	\|J2	
2	11	\| C1210	$11 n$	\|10\%	1	\|capacitor	\|C2	
3	11	\| C1210	$11 n$	\|10\%	I	\|capacitor	\|C3	
4	11	\|C1210	$11 n$	110\%	I	\|capacitor	\|C7	
5	11	\| C1210	11 n	110\%	I	\|capacitor	\|C8	
6	11	\|Elca_Coupler_RFDC	I	I	I	\|	\|TC1	
7	11	\| HSS2800	I	I	I	\|diode	\|D1	
8	11	\|HSS2800	I	I	I	\|diode	\|D2	
9	11	\| HSS2800	I	1	I	\|diode	\|D3	
10	11	\|HSS2800	I	I	I	\|diode	\|D4	
11	11	\|L1812	I	I	1	\|inductor	\|L1]	
12	11	\|L1812	I	I	I	\|inductor	\|L2	
13	11	\|NE5532D	I	I	I	\|Opamp 5-pin	\|U1	
14	11	\|PAD_160x140	I	I	I	\| Physical Connector	\|J6	
15	11	\|PAD_160x140	I	I	I	\| Physical Connector	\|J7	
16	11	\|PAD_160x140	I	1	I	\| Physical Connector	\|J4	
17	11	\|PAD_160x140	I	1	I	\| Physical Connector	\|J5	
18	11	\|PAD_160x140	I	I	I	\|Physical Connector	\|J1	
19	11	\|RT_3314J	\| 2 K 2	1	I	\|resistor	\|RT1	
20	11	\|RT_3314J	\|2K2	I	I	\|resistor	\|RT2	
21	11	\|RT_3314J	\|2K2	1	I	\|resistor	\|RT3	
22	\|1	\|RT_3314J	\|2K2	,	I	\|resistor	\|RT4	
23	11	\|R1206-J-1K0	\|1K	11\%	1	\|resistor	\|R12	
24	11	\|R1206-J-1K0	\|1K	11\%	I	\|resistor	\|R11	
25	\|1	\|R1206-J-1K0	\|1K	\|1\%	I	\|resistor	\|R22	
26	11	\|R1206-J-1K0	\|1K	11\%	I	\|resistor	\|R21	
27	11	\|R1206-J-10K	\|10K	11\%	I	\|resistor	\|R29	
28	11	\|R1206-J-10K	\|10K	11\%	I	\|resistor	\|R24	
29	11	\|R1206-J-15R	\|15R	\|1\%	I	\|resistor	\|R3	
30	11	\|R1206-J-15R	\|15R	11\%	I	\|resistor	\|R6	
31	11	\|R1206-J-120R	\|120R	\|1\%	I	\|resistor	\|R8	
32	11	\|R1206-J-120R	\|120R	11\%	I	\|resistor	\|R18	
33	11	\|R1206-J-200R	\|200R	\|1\%	I	\|resistor	\|R16	
34	11	\|R1206-J-200R	\|220R	11\%	I	\|resistor	\|R26	
35	11	\|R1206-J-220K	\|220R	\|1\%	I	\|resistor	\|R20	
36	11	\|R1206-J-220K	\|220K	11\%	I	\|resistor	\|R19	
37	11	\|R1206-J-220K	\|220K	11\%	I	\|resistor	\|R9	
38	11	\|R1206-J-220K	\|220K	11\%	I	\|resistor	\|R10	
39	11	\|R1206-J-270R	\|270R	11\%	I	\|resistor	\|R15	
40	11	\|R1206-J-270R	\|270R	\|1\%	I	\|resistor	\|R14	
41	11	\|R1206-J-270R	\|270R	11\%	I	\|resistor	\|R13	
42	11	\|R1206-J-270R	\|270R	\|1\%	I	\|resistor	\|R28	
43	11	\|R1206-J-270R	\|270R	11\%	I	\|resistor	\|R27	
44	\|1	\|R1206-J-270R	\|270R	\|1\%	I	\|resistor	\|R25	COD
45	11	\|R1206-J-330R	\|330R	11\%	I	\|resistor	\|R7	
46	\|1	\|R1206-J-330R	\|330R	\|1\%	I	\|resistor	\|R17	
47	11	\|R1206-J-470R	\|470R	11\%	I	\|resistor	\|R1	
48	11	\|R1206-J-470R	\|470R	11\%	I	\|resistor	\|R4	
49	11	\|R2512	\|82R	\|1\%	I	\|resistor	\|R2	
50	11	\|R2512	\| 82R	11\%	I	\|resistor	\|R5	
51	11	\|SMB-A	1	\|	I	\|BNC	\|J3	
52	11	\|c1206-0p3	10p3	110\%	\|100V	\|capacitor	\| C 12	
53	\|1	\|c1206-1n	11n	\|10\%	150 V	\|capacitor	\|C5	
54	11	\|c1206-1n	11n	110\%	150 V	\|capacitor	\|C9	
55	11	\|c1206-22p	122p	110\%	\|100V	\|capacitor	\|C11	
56	11	\|c1206-33p	133p	110\%	\|100V	\|capacitor	\|C1	
57	11	\|c1206-33p	133p	\|10\%	\|100V	\|capacitor	\|C6	
58	11	\|c1206-100n	\|100n	110\%	125 V	\|capacitor	\|C4	
59	\|1	\|c1206-100n	\|100n	\|10\%	125V	\|capacitor	\| $\mathrm{Cl} 10 \mid$	

Pag. 110

[^0]: All rights are strictly reserved
 Reproduction or issue to third parties
 in any form whatever
 is not permitted without written authorization

