

BROADCAST EQUIPMENT COMPANY

USE AND MAINTENANCE MANUAL E2500TR

TECHNICAL SECTION

Via G. Amendola 9 - 44028 Poggio Renatico (FE) - Italy Tel. +39 0532 829 965 - Fax +39 0532 829 177 E-Mail: info@elenos.com Internet address: www.elenos.com

Edition 1 Rev. 2 - 14/10/2003 Code MAN0090

Dear Customer,

Firstly, thank you for choosing an **ELEINOS** product.

ELEINE products are solid state or thermionic valve transmitters that develop power from a minimum of 20W to a maximum of 30KW.

Great care has been taken during the design of the protection circuitry to ensure compatability with products from other manufacturers. However the best performance is achieved when the equipment is used with other products manufactured by

The unit has been designed to guarantee consistent performance over time, without the need for special maintenance. The need for this is minimised by regular functional checks of those components which are ventilated.

Operation of the unit is very easy and intuitive. Even so it is recommended that this manual and other relevant documentation is read carefully before any operation is attempted.

Customer Care

CONTENTS

1. GENERAL

1.1. Front	view TR version	Page 7
1.1.1.	Description of the front panel	Page 7
1.2. Rear	view TR version	Page 9
1.2.1.	Fuse ratings and power supply connection schematic	Page 9
1.2.2.	Description of the rear panel	Page 9
1.3. Rear	view DR version	Page 10
1.3.1.	Fuse ratings and power supply connection schematic	Page 10
1.3.2.	Description of the rear panel	Page 10
1.4. Desc	ription of materials supplied in the packaging	Page 11

2. INSTALLATION

2.1.	Unpacking	Page 13
2.2.	Assembly and disassembly	Page 13
2.2.	Configuration to the line voltage	Page 14
2.3.	Connection to the electrical supply	Page 15
24	Installation	Page 15

3. USER INSTRUCTIONS

3.1. Powe	ring up	Page17
3.2. Desc	ription of the graphics interface, setups and measurements	
3.2.1.	Main menu	Page 17
3.2.2.	Selection menu	Page 17
3.2.3.	Temperatures menu (TR version)	Page 18
3.2.4.	Temperatures menu (DR version)	Page 18
3.2.5.	Voltage and current menu (TR version)	Page 19
3.2.6.	Voltage and current menu (DR version)	Page 19
3.2.7.	RF amplifier currents	Page 20
3.2.8.	Power limiting configuration menu	Page 20
3.2.9.	"LOCKED" mode	Page 21
3.2.10.	Modem configuration menu	Page 21
3.2.11.	System information menu	Page 22
3.2.12.	Alarm list menu	Page 22
3.3. Perfo	rmance checks	Page 27
3.4. Telem	netry connection and operation	Page 29
3.4.1.	SMS operation	Page 37
3.5. Analo	og measurements connector	Page 45
3.6. Diag	nostics connector	Page 47

4. GENERAL DESCRIPTION

4.1. Intro	oduction	Page 49
4.1.1.	Protection	Page 49
4.1.2.	Measurements	Page 49
4.1.3.	Telemetry	Page 49
4.1.4.	Indicators	Page 50
4.2. Bloc	k diagrams	

4.	2.1.	Linear power supply version	Page 51*
4.	2.2.	Switching power supply version	Page 53*
4.3.	Power	supply section	
	4.3.1.	Power (linear and switching)	Page 55
	4.3.2.	Auxiliary (linear and switching)	Page 55
4.	4. Rac	lio frequency section	
	4.4.1.	Input splitter	Page 56
	4.4.2.	RF modules	Page 56
	4.4.3.	Output combiner	Page 57
	4.4.4.	Low-pass filter and directional coupler	Page 57
	4.4.5.	Shunt	Page 57
	4.4.6.	CPU board	Page 58
	4.4.7.	ALC board	Page 58

5. ELECTRICAL SCHEMATICS

•	5.1. POWER SUPPLY (LINEAR VERSION)		
	5.1.1. Schematic	.Paae	61*
	5.1.2. Parts list	Page	63
	5.2. POWER SUPPLY (SWITCHING VERSION)		
	5.2.1 Schematic	Page	65*
	5.2.2 Parts list	Page	66
	5.3 VENTILATION SYSTEM	ago	00
	5.3.1 Schematic	Page	69
	5.3.2 Parts system	Page	70
	5.4 ALIXILLARY POWER SLIPPLY (LINEAR VERSION)	.ruge	/0
	5/1 Lavout	Page	71
	5.4.7 Schematics	.iuge	/ 1
	5.4.2.1 Auxiliant power supply	Pago	73*
	5.4.2.2 Overcurrent damping	Page	75
	5.4.2.2. Overconeni cidinping	.Tuye	7J 77*
	5.4.2.5. I/O user interface	.ruge	70
	5.4.2.4. Thermal probes amplifiers	.rage	/ 9
	5.4.2.5. Current-voltage probe amplitiers	.rage	80
		.Page	81
	5.5. AUXILIARY POWER SUPPLY (SWITCHING VERSION)		07
	5.5.1. Layout	.Page	87
	5.5.2. Schematics	D	00*
	5.5.2.1. Auxiliary power supply	.Page	89*
	5.5.2.2. I/O user interface	.Page	91*
	5.5.2.3. Switching unit interface	.Page	93
	5.5.2.4. Thermal-Voltage probes amplifiers	.Page	94
	5.5.3. Parts list	.Page	95
	5.6. CPU	_	
	5.6.1. Layout	.Page	99*
	5.6.2. Schematics		
	5.6.2.1. CPU board block diagram	.Page	101*
	5.6.2.2. AD/DA and multiplexer	.Page	103*
	5.6.2.3. CPU board connector	.Page	105*
	5.6.2.4. RS485 and analog outputs	.Page	107*
	5.6.2.5. CPU	.Page	109*
	5.6.2.6. Digital I/O	.Page	111
	5.6.3. Parts list	.Page	112
	5.7. ALC		
	5.7.1. Layout	.Page	121*
	5.7.2. Schematics		
	5.7.2.1. ALC control	.Page	123*
	5.7.2.2. Bias buffers - A	.Page	125

Engineering Department PHONE: +39 0532 829 965 - FAX: +39 0532 829 177 E-Mail: support@elenos.com

1 A A A	

5723 Bigs huffers - B	Page	126
5.7.2.4 Power measurement amplifiers	Page	127
5.7.2.5 Thermal measurement amplifiers	Page	128
5.7.3. Parts list	Page	129
5.8. SHUNT		
5.8.1. Layout	Page	135
5.8.2. Schematic	Page	137*
5.8.3. Parts list	Page	139
5.9. KEYBOARD		
5.9.1. Layout	Page	141
5.9.2. Schematic	Page	142
5.9.3. Parts list	Page	143
5.10. DIRECTIONAL COUPLER		
5.10.1. Layout	Page	145
5.10.2. Schematic	Page	146
5.10.3. Parts list	Page	147
5.11. USER INTERFACE		
5.11.1. Layout	Page	149
5.11.2. Schematics	Page	149
5.11.3. Parts list	Page	150
5.12. THERMAL PROBE		
5.12.1. Layout	Page	151
5.12.2. Schematics	Page	151
	Page	152
5.13. VOLIAGE PROBE	Derere	152
5.13.7. Layou	ruge	153
5.13.2. Schemalic	Page	154
5.14 RE MODILIE	i uye	134
5.14.1 Assembly drawing	Page	155
5.14.2 Schematic	Page	156
5 1 4 3 Parts list	Page	157
5 15 LOW-PASS FILTER	i ugo	107
5.15.1. Schematic	Paae	159
5.15.2. Parts list	Paae	159
5.16. COMBINER SYSTEM	5	
5.16.1. Input splitter	Page	160
5.16.2. Output combiner	Page	161
	Ũ	
6. MAINTENANCE	D	1/0
0.1. Air tilter replacement	Page	163
7. TECHNICAL DATA	Page	165
	0	

Page numbers marked with an asterisk (*) indicate A3 format

1.1.1. Front panel description

1) Display

- 2) Navigation keypad and contrast adjustment (Sx and Dx keys)
- 3) Selection and modification keys
- 4) System/protection reset key. To reset the system, press the key down for more than 2 seconds.
- 5) Stand-by key
- 6) Indicator leds
- 7) Dip switches for selecting the unit's address
- 8) Disable key
- 9) Analog readout
- 10) RS 485 interface
- 11) RF monitor output (≈ -63dBc)

N.B.

Do not obstruct the ventialtion grills and periodically clean or replace the filter. The frequency of this operation will depend on ambient conditions.

1.2.2. Rear panel description

- 1) RF input female N-type connector
- 2) RF output LC female connector
- 3) Power supply connector (see phase connection in the diagram above)
- 4) American interface
- 5) Auxiliary power supply connector (MAX 3.15A)

1.3.2. Rear panel description

- 1) RF input female N-type connector
- 2) RF output LC female connector
- 3) Power supply connector (see phase connection in the diagram above)
- 4) American interface
- 5) Auxiliary power supply connector (MAX 3.15A)
- 6) Main switch

1.3. Description of materials supplied in the packaging The equipment is supplied inside a wooden box, together with other components necessary for correct operation.

In the event that the parts described below are not included inside the packaging, contact ELENOS immediately.

In addition to the E2500 amplifier (DR or TR), the following are also supplied:

- 1) The equipment's user and maintenance manual (two separately bound sections)
- 2) The power supply connector complete with contacts
- 3) The replacement fuse kit:
 - 6 x 6.3A T fuses
 - 2 x 500mA T fuses
 - 1 x 3.15 A T fuse
 - 1 x 1 A T fuse

2.1. Unpacking

The equipment is supplied in a wooden box (rigid or collapsible).

Open the top cover of the packing, remove the user and maintenance manual and the kit containing the supply connector and the replacement fuses. Remove the polystyrene protective packing from around the equipment and cut the straps which tie it to the base of the box.

2.2. Assembly and disassembly

The equipment (supplied assembled) is easily disassembled into three main sections (power supply, RF section and ventilation draw) to facilitate transport and installation.

- Remove the top cover (just the electronics panel is sufficient) and the bottom cover
- Remove the front panel
- Disconnect the flat cable from the ALC board at the top of the unit and from the CPU board, located in the lower part of the unit
- Disconnect the fan supply
- Disconnect the power supply connections from the RF module
- Open the fasteners

To re-assemble the unit, follow the reverse procedure

2.2. Linear version

Configuration to the electrical line voltage

The user must verify that the voltage generated by the power supply does not exceed 50V under no-load conditions (about 45V at full power). Otherwise, the voltage selector should be changed to conform to the values indicated by the manufacturer.

Switching version

The equipment is supplied configured as requested by the customer. If it becomes necessary to change the power supply voltage from 380V three-phase or 220V single phase to 220V three-phase or 110V single phase (to change to 110V single phase, contact ELENOS for further details), consult the schematic of the switching power supply.

2.3. Connection to the electrical supply

Before proceeding, ensure that there is no voltage present on the electrical supply to be used for the equipment

In accordance with the power requirements of the equipment, do not use conductors of section less than 2.5mm²

Use a suitable pair of pincers or pliers to fix the contacts of the plug supplied to the electrical supply cables; for greater security it is advisable to solder the connections.

Insert the contacts into the corresponding sockets of the connector, paying attention to the phases, neutral and earth as indicated in section 1.2.1. and on the legend of the rear panel.

Connect the plug to the unit.

correct operation.

3.1. Active keys The display contrast control is active in every menu and is controlled by the left and right arrow keys.

Any menu can be exited by pressing the SEL key which activates the selection menu.

The ST-BY key is always active to power up or power down the radio frequency section.

The RESET key, which is always active, will, when pressed for less than 1.5 seconds, reset the alarm and protection software. If pressed for more, it will reset the microprocessor system hardware.

3.2.1. Main menu (MAIN WINDOW)

Display of non-adjustable parameters.

- Forward power (FWD)
- Reflected power (REF)
- Total current absorbed by the RF section (Ids)
- RF section supply voltage (Vds)

The up/down arrow keys are used to scroll through the menu list (bottom line):

- MAIN WINDOWS
- SYS INFO
- GSM FIELD STRENGTH
- GSM MODEM CONFIG
- TEMPERATURES
- POWER LIMITER SETTINGS
- PSU VOLTAGES-CURRENTS
- RF AMPLIFIER CURRENTS
- ALARMS LIST

The ENTER key selects the chosen menu

The temperatures are displayed as follows:

- environmental (ENV)
- heatsink RF section A (RF A)
- heatsink RF section B (RF B)
- heatsink power supply rectifier

The temperatures are displayed as follows:

- environmental (ENV)
- heatsink RF section A (RF A)
- heatsink RF section B (RF B)
- heatsink power supply A (PSU A)
- heatsink power supply B (PSU B)
- heatsink power supply C (PSU C)

Display of non-adjustable parameters.

Voltages:			
- auxiliary	(-12.0)		
- auxiliary	(5.0)		
- auxiliary	(12.0)		
- RF section	(50.0)		
Curents:			
- Main power supply A			

- Main power supply B

3.2.6. Voltage and currents menu (PSU VOLTAGES-CURRENTS) DR version

Display of non-adjustable parameters.

- Voltages:

- auxiliary	(-12.0)
- auxiliary	(5.0)
- auxiliary	(12.0)
- RF section	(50.0)

- Currents:

- main power supply A
- main power supply B
- main power supply C

Display of non-adjustable parameters.

- Amplifier currents heatsink A and heatsink B.

3.2.8. Power limiter settings menu (POWER LIMITER SETTINGS)

Display of adjustable and non-adjustable parameters.

Non-adjustable:

- forward power (FWD)
- input power (InPwr)
- ALC error voltage (Err)

Adjustable:

- ALC threshold (Thrs)

To adjust the ALC threshold, press the ENTER key; the W measurement unit will be replaced by the hash character (#). Enter the desired value using the up/down keys. Terminate the procedure by pressing the ENTER key (the hash character (#) will be replaced by the previous unit (W)), or exit the menu (SEL key).

Normal operation with the key in the "LOCKED" position. In the event of any error message, the display will show the "ALARMS LIST" page.

3.2.10. Modem configuration menu (GSM MODEM CFG)

GSM modem configuration for handling SMS messages.

Display of non-adjustable parameters.

- serial communications address (ADDRESS)
- software version (Sw.Vers.)
- transmission hour counter

3.2.12. Alarms list menu (ALARMS LIST)

Display of non-adjustable parameters.

The alarms are displayed, preceded by a code. The number of alarms can be greater then two in which case the up/down arrow keys can be used to scroll the display vertically. The alarm on the first line is the main one and is displayed automatically after a time

delay.

The following pages list the alarm codes that can be generated by the system, together with their description.

Alarms list	Alarm Code	Description
	"000 CORRECT WORKING" "001 STOP"	normal operation; equipment in stand-by;
	"002 HIGH REF PWR ACTIVE"	exceeded (active);
	"003 HIGH REF PWR"	exceeded (historical);
	"004 HIGH REF PWR HW ACTIVE"	maximum reflected power limit (hardware) exceeded (active);
	"005 HIGH REF PWR HW"	maximum reflected power limit (hardware)
	"006 WARN HIGH REF PWR ACTIVE"	reflected power warning limit exceeded
	"007 WARN HIGH REF PWR"	reflected power warning limit exceeded (soft-
	"008 BLOCKED"	equipment blocked (after 5 attempts);
	"010 TIMING"	alarm reset active; The equipment is awaiting reset after
		overcurrent protection (TR version);
	"011 EEPROM CHKSUM ERROR"	checksum error in the EEPROM memory;
	"012 -3dB CARRIER ACTIVE"	output power less than half the value pro grammed in the "POWER LIMITER SET- TINGS" window (active);
	"013 -3dB CARRIER"	output power less than half the value programmed in the "POWER LIMITER SETTINGS" window;
	"014 PSU OVERCURRENT ACTIVE"	power supply overcurrent (active), (TR version);
	"015 PSU OVERCURRENT"	power supply overcurrent (historical) (TR version):
	"016 -12V SUPPLY FAULT ACTIVE"	-12V supply fault (active);
	"017 -12V SUPPLY FAULT"	-12V supply fault (historical);
	"018 MAX PSU A TEMP ACTIVE"	maximum power supply A temperature (software) exceeded (active);
	"019 MAX PSU A TEMP"	maximum power supply A temperature (software) exceeded (historical);
	"020 MAX PSU B TEMP ACTIVE"	maximum power supply B temperature (software) exceeded (active);
	"021 MAX PSU B TEMP"	maximum power supply B temperature (software) exceeded (historical):
	"022 MAX PSU C TEMP ACTIVE"	maximum power supply C temperature
	"023 MAX PSU C TEMP"	maximum power supply C temperature
	"024 WARN PSU A TEMP ACTIVE"	power supply A software warning tempera-
	"025 WARN PSU A TEMP"	power supply A software warning tempera-
	"026 WARN PSU B TEMP ACTIVE"	power supply B software warning tempera- ture exceeded (active):
	"027 WARN PSU B TEMP"	power supply B software warning tempera- ture exceeded (historical);

Alarms list	Cod. Alarm	Description
	"028 WARN PSU C TEMP ACTIVE"	power supply C software warning tempera-
	"029 WARN PSU C TEMP"	power supply C software warning tempera-
	"030 MAX XFRMR TEMP ACTIVE"	transformer max temperature exceeded, TR version (active)
	"031 MAX XFRMR TEMP"	transformer max temperature exceeded, TR version (historical):
	"032 WARN XFRMR TEMP ACTIVE"	transformer warning temperature exceeded, TR version (active);
	"033 WARN XFRMR TEMP"	transformer warning temperature exceeded, TR version (historical);
	"034 MAX ENV TEMP ACTIVE"	maximum ambient temperature (software) exceeded (active);
	"035 MAX ENV TEMP"	maximum ambient temperature (software) exceeded (historical);
	"036 WARN ENV TEMP. ACTIVE"	ambient temperature warning limit exceeded (software) (active);
	"037 WARN ENV TEMP."	ambient temperature warning limit exceeded (software) (historical);
	"038 RF A OVERTEMP ACTIVE"	RF A heatsink temperature, maximum limit exceeded (software) (active);
	"039 RF A OVERTEMP"	RF A heatsink temperature, maximum limit exceeded (software) (historical);
	"040 WARN RF A TEMP ACTIVE"	RF A heatsink temperature, warning limit exceeded (software) (active);
	"041 WARN REA TEMP"	RF A heatsink temperature, warning limit exceeded (software) (historical);
	"042 RF B OVERTEMP ACTIVE"	RF B heatsink temperature, maximum limit exceeded (software) (active);
		RF B heatsink temperature maximum limit exceeded (software) (historical);
	"O44 WARN RE B TEMP ACTIVE	exceeded (software) (active);
		exceeded (software) (historical);
	"047 PSULHW OVERCURRENT"	(active);
		(historical);
	"049 EXT INTLOCK ACTIVE"	is faulty or broken (active); the contact between "DL ENABLE" and
		"DI_COMMON" on the diagnostic con- nector is open (active):
	"050 PSU A OVERCURRENT ACTIVE"	maximum current limit exceeded (software)
	"051 PSU A OVERCURRENT"	maximum current limit exceeded (software) psu 1; DR version (historical);
	"052 PSU B OVERCURRENT ACTIVE"	maximum current limit exceeded (software) psu 2; DR version (active);
	"053 PSU B OVERCURRENT"	maximum current limit exceeded (software) psu 2; DR version (historical);
	"054 PSU C OVERCURRENT ACTIVE"	maximum current limit exceeded (software) psu 3; DR version (active);

ELENOS

Alarms list	Cod. Alarm	Description
	"055 PSU C OVERCURRENT"	maximum current limit exceeded (software) psu 3 DR version (historical):
	"056 PSU A OVERCURRENT ACTIVE"	maximum current limit exceeded (software) psu A TR version (active):
	"057 PSU A OVERCURRENT"	maximum current limit exceeded (software) psu A TR version (historical):
	"058 PSU B OVERCURRENT ACTIVE"	maximum current limit exceeded (software) psu B TR version (active);
	"059 PSU B OVERCURRENT"	maximum limit exceeded (software) corrente psu B TR version (historical);
	"060 PSU A SHARE ERROR ACTIVE"	share error psu A DR version (active);
	"061 PSU A SHARE ERROR"	share error psu A DR version (historical);
	"062 PSU B SHARE ERROR ACTIVE"	share error psu B DR version (active);
	"063 PSU B SHARE ERROR"	share error psu B DR version (historical);
	"064 PSU C SHARE ERROR ACTIVE"	share error psu C DR version (active);
	"065 PSU C SHARE ERROR"	share error psu C DR version (historical);
	"066 THERMAL DERATING ACTIVE"	power reduction due to excessive tempera- ture (active);
	"067 THERMAL DERATING"	power reduction due to excessive tempera- ture (historical).

3.3. Checking performance	This procedure for checking performance must be carried out if there is any doubt over the integrity of the equipment as a result of possible transport damage and should only be performed by expert personnel, capable of using radio frequency measurement equipment.
Power generated	Connect a good quality wattmeter (e.g. Bird model 43) to the output connector of the equipment (LC or, by request, 7/8" flange). Connect the output of the wattmeter to a good quality dummy load (SWR less than 1.05) able to handle at least 2500W continuously, via a 50 Ohm coaxial cable of suitable section (e.g. Cellflex 1/2"). Adjust the maximum range of the wattmeter to correspond to the power generated (e.g. with a Bird model 43 wattmeter, use a 2500W probe suitably orientated to measure forward power). Switch on the equipment and check that the power reading on the display corresponds to the reading on the wattmeter; a difference of upto 50W between the two is acceptable at nominal power (2500W). It is of the utmost importance to use a wattmeter which performs to its high quality specification. A false reading will result if the directional coupler of the wattmeter is not connected directly to the equipment.

3.4.

Telemetry connection and operation Each unit has telemetry incorporated which can work with any ANSI terminal, without the need for special software; for example, Hyperterminal (supplied with Microsoft Windows (c)), Procomm or Telix for DOS-based systems are all suitable.

Connect the equipment via a suitable cable (not supplied) to an IBM compatible PC, or to a GSM modem or a traditional network.

Connecting two different interface standards (IE485 con RS232) may seem strange, but no problems will be encountered, using the configuration shown below. The signals used are identical, with the exception of their connector position.

<u>CONFIGURATION</u>

AT&DO	Ignores DTR
AT&HO	Flow control disactivated
AT&10	Software flow control disactivated
AT&R1	Ignores RTS
AT&SO	Ignores DSR (permanently active)
AT&N6	9600 Baud (maximum)
AT&U6	9600 Baud (minimum)
AT&WO	Writes the configuration to NVRAM 0
ATZO	Resets the modem to the profile indicated

This sequence of commands is sent directly to the modem from the E2000 by entering the "GSM Modem Config" menu and pressing the ENTER key. It is important that the modem is pre-configured for serial communication in "AUTOBAUD" mode or at 9600 8N1.

The modem must be equipped with a SIM card enabled for data transmission and with the PIN code disabled, otherwise it will not be possible to register on the GSM network. It is recommended, furthermore, to avoid interference from adjacent cells, that a directive antenna pointed at the closest GSM repeater is used.

TELEMETRY OPERATION

The commands are sent by pressing character keys (case insensitive); for example pressing "a" displays the main page. The character can be upper or lower case.

Activation procedure (direct cable connection)

Press "1"

The equipment will respond by displaying the main menu

Navigate between the various windows by pressing the corresponding keys

Go back to the Main menu ("Q" key)

Activation procedure (connection via modem GSM or telephone line)

Connect to the equipment by pressing the telephone number of the modem connected to the equipment Once the connection is established the equipment will respond by displaying the Main Menu window

Navigate between the various windows by pressing the corresponding keys

Once these passages are completed you will just have to stop the communication

If more than one equipment will be connected to the same modem they will have to be appropriately addressed with the dip switches on the front panel by using the figures from 1 to 63. Address 0 is the one of the equipment alone, therefore one apparatus or more will have to be addressed as 1,2,n.

The managing of an equipment via text messages is possible only with an equipment alone, which will be active only if the address is "0".

For cascade connected machines, the activation procedure is slightly different: Activation procedure (for Modem or cable connections):

- Press the "i" character followed by the address (e.g. i03), the equipment will respond by displaying the main menu window

- Navigate in the various windows
- Go back to the Main Menu
- In case it is needed, select another machine to interrogate (e.g. "i04")
- Go back to the Main Menu
- Disconnect

Always remember to digit "0" before every address smaller than 10 (01, 02...09), otherwise you will not obtain any answer.

To display the parameters, press the keys indicated above; to exit the page press "Q".

<pre></pre>								
MAIN MENU.								
K = INPUT USER OR SYSTEM KEY								
A = SETTING AND READING PARAMETERS								
B = STATUS / FAILURES LIST								
$ F = SCHEDULE \qquad (SERVICE)$								
L = INTERRUPT ERROR (SERVICE)								
N = INTERNAL STATUS (SERVICE)								
V = SERIAL MONITOR (SERVICE)								
P = SMS PHONE AND ALARMS SETUP								
Q = MAIN MENU (this page!)								
System key has not been customized yet.								
Default loaded value : System Key = 24								
User key has not been customized yet.								
Default loaded value : System Key = 22								
User should customize User and System keys								
+								

"Main Menu" page of the machine addressed with "03".

To visualise the parameters press they keys indicated above; to exit the pages press key "Q".

To edit the parameters, enter the numerical access code (procedure "K ").

NOTE: The user and system passwords are pre-programmed at the factory: SYSTEM =24 USER =22. The user must customise the codes! To select the field to edit, press "ENTER "(the colour of the character to edit will change), then change it by using the up/down arrow keys. Enter the character by pressing "Q". If the "USER "code is entered, the previous menu will appear, if the "SYSTEM" code is entered, the following menu will appear.

-----+ - id n <-Q-> = MAIN MENU | ELENOS 2KW AMPL. <Remote Control V. x.x -----+ | MAIN MENU. I J = SYSTEM SERVICEТ ! = ANALOGIC CHANNELS CALIBRATION (CURRENT) Т # = ANALOGIC CHANNELS CALIBRATION (VOLTAGE & TEMPERATURES) T K = INPUT USER or SYSTEM KEY A = SETTING AND READING PARAMETERS B = STATUS / FAILURES LIST T T F = SCHEDULE(SERVICE) L L = INTERRUPT ERROR (SERVICE) Т N = INTERNAL STATUS (SERVICE) L V = SERIAL MONITOR (SERVICE) T P = SMS PHONE AND ALARMS SETUP L Q = MAIN MENU (this page!) Т -----+

If the correct code has been entered, the parameters to edit will be highlighted in a different colour; the arrow keys (up, down, right, left)are used to select the field to edit; once the desired field has been reached, press "ENTER "(the colour of the field will change)and change it with the up/down arrow keys. To exit from editing a field, press "ENTER "again (the original colour of the character will be restored).

+			4
ELENOS 2KW AMPL. <remo< td=""><td>te Control V. x.x</td><td>- id n</td><td><-Q-> = MAIN MENU </td></remo<>	te Control V. x.x	- id n	<-Q-> = MAIN MENU
RF CURRENTS	STATUS:		+ ا
Mod n: Al A2	A3 A4	B1 B2	B3 B4
Id(A):			I
	+		
MAIN PSU	AUX PSU	STAND-BY :	I
Psu A (A):	Vcc (5V):	RESET :	I
Psu B (A):	V+ (12V):		I
Psu C (A):	V- (12V):		I
Ids (A):	Vds (V):		1
		POWER LIMITER	1
RF SECTION	i i	Threshold (W):	I
Fwd (W):	Eff (%):	Limiting (%):	I
Ref (W):	Input (W):		1
		MAIN PSU>	1
TEMPERATURES		Max Vds (V):	I
Max RF (C):	Max PSU(C):		I
Env (C):	Psu A (C):	LCD>	I
Rf A (C):	Psu B (C):		I
Rf B (C):	Psu C (C):	ELAPSED TIME:	: :
+	+		4

The upper part consists of the line "STATUS: 000 CORRECT WORKING "where 000 = status code/alarm followed by description. The status or the main alarm that has disabled the equipment is displayed. The right hand part displays the values indicated.

The left hand part (partially modifiable)comprises:

STAND-BY := (TRUE/FALSE, modifiable)status/command RF output;

RESET :=(TRUE/FALSE, modifiable)reset alarms and protection;

Threshold (W):=Programming of the operational RF power; Error (V):=Displays the ALC error voltage;

Max Vds (V):=Maximum voltage limit of the RF stages power supply;

LCD ----->=Programming/display of the LCD display contrast; ELAPSED TIME:= Counter of transmission hours (H,MM,SS).

+ ELENOS 2KW AMPL. <ren< th=""><th>note Control V. x.x</th><th>- id n <-Q-> =</th><th>= MAIN MENU </th></ren<>	note Control V. x.x	- id n <-Q-> =	= MAIN MENU
RF CURRENTS	STATUS :		+
Mod n: A1 A2	A3 A4	B1 B2 B3	в4
Id(A): 9.5 9.5	9.4 9.4	9.4 9.4 9.4	9.4
MAIN PSU	AUX PSU	 STAND-BY : FALSE	۱ ا
Psu A (A): 25.0	Vcc (5V): 5.00	RESET : FALSE	I
Psu B (A): 25.5	V+ (12V): 11.92	1	I
Psu C (A): 25	V- (12V): 12.01	1	I
Ids (A): 75.5	Vds (V): 45.00	I	I
		POWER LIMITER	I
RF SECTION	1	Threshold (W): 2050	I
Fwd (W): 2500	Eff (%): 70.7	Limiting (%): 3.7	I
Ref (W): 50	Input (W): 60	I	I
		I	I
TEMPERATURE	IS	I	I
Max RF (C): 40.5	Max PSU(C): 37.3	I	I
Env (C): 20.7	Psu A (C): 35.5	LCD Contrast : 428	I
Rf A (C): 40.5	Psu B (C): 37.3	I	I
Rf B (C): 38.4	Psu C (C): 35.5	ELAPSED TIME :	200:50:42

SERVICE SCREEN.

A

WARNING! The user must never modify the values shown in this window!

Currents calibration screen - DR version.

+-	ELEN	os	2KW	AMPL.	<remote< th=""><th>Control</th><th>V. x.:</th><th>x</th><th></th><th>id n</th><th><-Q-></th><th>- = MAIN</th><th>+ MENU </th></remote<>	Control	V. x.:	x		id n	<-Q->	- = MAIN	+ MENU
T	GAIN	A	ND O	FFSET	CALIBRAT:	ION (CUR	RENT,	A).					۲ ا
I				STEP	VALUE	MUL.	DIV.	OFFS.		MIN	MAX	STO L	STO_H
L	A1	:	R1	C1	C2	C3	C4	C5		C6	C7	<u></u> 28	C9
L	A2	:	R2										I
I	A3	:	R3										- I
L	A4	:	R4										1
I	A5	:	R5										I
I	в1	:	R6										I
I	в2	:	R7										- I
I	в3	:	R8										I
I	в4	:	R9										I
I	в5	:	R10										I
I	PSU 2	A :	R11										I
I	PSU 1	3:	R12										1
I	PSU (2:	R13										I
I													I
I	STEP	:	= AD	Value	(0-4095))		MIN	=	STEP	(0-4095)	
I	VALU	2:	= ST	EP * M	UL./DIV -	+ OFFS.		MAX	=	STEP	(0-4095)	
I	OFFS	. :	= ST	EP(off	(set) * M	JL./DIV.		STO_L (H) =	Store	e step M	IIN (MAX)	I
+-													+

Legend:

Heading: V x.x = software version,-id n = polling address for communication.

- C= Column, R= Row.
- C1 = Value read by the A/D converter (converter step);
- C2= Converted integer value (without decimal point);
- C3= Multiplier (modifiable field);
- C4 = Divider (modifiable field);
- C5 = Offset;
- C6= Value (in converter steps) acquired as the lower calibration point;
- C7 = Value (in converter steps) acquired as the upper calibration point;
- C8= Boolean (TRUE/FALSE, modifiable field)to control the acquisition of point C6;
- C9= Boolean (TRUE/FALSE, modifiable field)to control the acquisition of point C7.

The automatic calibration procedures must only be performed by specialised ELENOS personnel.

- R1 -R4 = Amplifier current in heatsink A;
- R5 = Not used;
- R6 -R9 = Amplifier current in heatsink B;
- R10 = Not used;
- R11 = Switching power supply A current;
- R11 = Switching power supply B current;
- R11 = Switching power supply C current;

ELENS

Current calibration screen - TR version.

+ •	ELEN	os	2KV	₹ AMPL.	<remote< th=""><th>Control</th><th>V. x.x</th><th></th><th></th><th>id n</th><th><-Q-></th><th>= MAIN</th><th>+ MENU +</th></remote<>	Control	V. x.x			id n	<-Q->	= MAIN	+ MENU +
I	GAIN	A	ND C	OFFSET	CALIBRAT	ION (CUR	RENT, A)).					I
I				STEP	VALUE	MUL.	DIV.	OFFS.		MIN	MAX	STO_L	STO_H
I	A1	:	R1	C1	C2	C3	C4	C5		C6	C7	C8	C9
I	A2	:	R2										1
I	A3	:	R3										1
I	A4	:	R4										1
I	A5	:	R5										I
I	в1	:	R6										I
I	в2	:	R7										I
I	в3	:	R8										I
I	в4	:	R9										I
I	в5	:	R1()									I
I	PSU 2	A:	R11	L									I
I	PSU 1	в:	R12	2									1
I													1
I													1
I	STEP	:	= AI) Value	(0-4095)		MIN	=	STEP	(0-4095))	1
I	VALU	E :	= S7	CEP * M	UL./DIV	+ OFFS.		MAX	=	STEP	(0-4095))	1
I	OFFS	•	= S1	TEP (off	set) * M	UL./DIV.		STO_L(H)	=	Store	e step M	IN (MAX)	I

Legend:

Heading: V x.x = software version, -id n = polling address for communication. C= Column, R= Row.

- C1 = Value read by A/D converter (converter step);
- C2= Converted integer value (without decimal point);
- C3= Multiplier (modifiable field);
- C4 = Divider (modifiable field);
- C5= Offset;
- C6= Value (in converter steps) acquired as lower calibration point;
- C7= Value (in converter steps) acquired as upper calibration point;
- C8= Boolean (TRUE/FALSE, modifiable field) to control the acquisition of point C6;
- C9= Boolean (TRUE/FALSE, modifiable field)to control the acquisition of point C7.

The automatic calibration procedures must only be performed by specialised ELENOS personnel.

R1 -R4 = Amplifier current on heatsink A;

- R5 = Not used;
- R6 R9 = Amplifier current on heatsink B;
- R10 = Not used;
- R11 = Traditional power supply A current;
- R11 = Non switching power supply;

Calibration screen - temperature and voltage reading calibration, DR version.

+.		
	ELENOS 2KW AMPL. <remote control="" td="" v.="" x.x<=""><td>- id n <-Q-> = MAIN MENU </td></remote>	- id n <-Q-> = MAIN MENU
т. 	GAIN CALIBRATION (VOLTAGE, V).	GAIN DRV LOOPS.
I	STEP VALUE MUL. DIV.	Ι Ι
I	VCC :	PSU STEP:
I	V+ :	ALC STEP:
I	V- :	I I
I	VDS :	I I
I	ALC E:	I I
I		Ι Ι
I	GAIN CALIBRATION (TEMPERATURE, C).	Ι Ι
I	STEP VALUE MUL. DIV.	Ι Ι
I	AMB. :	Ι Ι
I	RF A:	Ι Ι
I	RF B:	Ι Ι
I	PSU 1:	Ι Ι
I	PSU 2:	Ι Ι
I	PSU 3:	PSU step: Max Efficiency Loop.
I		ALC step: Constant Reflected
I	STEP = AD Value $(0-4095)$	Loop.
I	VALUE = STEP * MUL./DIV.	Ι Ι

Legend:

Heading : V x.x = software version, -id n = polling address for communication.

STEP = A/D converter reading; VALUE = Converted integer value (without decimal point); MUL. =Multiplier (modifiable field); DIV. = Divider (modifiable field); AMB.: = Temperature -ambient; RF A: = Temperature -heatsink RF A; RF B: = Temperature -heatsink RF B;

 $\label{eq:PSU 1: = Temperature -switching power supply A;} PSU 1: = Temperature -switching power supply A;$

PSU 2: = Temperature -switching power supply B;

PSU 3: = Temperature -switching power supply C;

PSU STEP: = Increment/decrement step value (in D/A converter steps) for the power supply voltage control loop;

ALC STEP: = Increment/decrement step value (in D/A converter steps) for the ALC reference voltage control loop for reducing the power in the event of excessive standing waves.

Calibration screen - temperature and voltage reading - TR version.

+-										+
 +.	ELEN	OS 2K	W AMPL.	<remote< td=""><td>Control</td><td>V. x.x</td><td>_+</td><td>- id n</td><td><-Q-> = MAIN M</td><td>'ENU </td></remote<>	Control	V. x.x	_+	- id n	<-Q-> = MAIN M	'ENU
i	GAIN	CALI	BRATION	(VOLTAG	E, V).		GAIN	DRV LOOP	?S.	i i
L			STEP	VALUE	MUL.	DIV.	I			1
L	VCC	:					PSU	STEP:		1
I	V+	:					ALC	STEP:		I
I	v-	:					I			I
I	VDS	:					I			I
I	ALC H	Ξ:					I			I
L							I			I
L	GAIN	OFFS	ET CALI	BRATION	(TEMPERA	TURE, C).	I			I
L			STEP	VALUE	MUL.	DIV.	I			I
I	AMB.	:					I			1
L	RF A	:					I			I.
L	RF B	:					I			1
I	PSU	:					I			l. I
I							I			l. I
I							PSU s	step: Max	CEFFICIENCY LOOP	». I
I	STEP	= A	D Value	(0-4095)		ALC s	step: Cor	nstant Reflected	I
L	VALUI	E = S'	TEP * M	UL./DIV.			I		Loop.	I
I							I			l. I

Legend:

Heading: V x.x = software version, -id n = polling address for communication.

STEP = A/D converter reading;

VALUE = Converted integer value (without decimal point);

MUL. = Multiplier (modifiable field);

DIV. = Divider (modifiable field);

AMB.: = Temperature -ambient;

RF A: = Temperature -heatsink RF A;

RF B: = Temperature -heatsink RF B;

PSU : = Temperature -heatsink of rectifiers of power supply A and B;

PSU STEP: = Increment/decrement step value (in D/A converter steps) for the power supply voltage control loop;

ALC STEP: = Increment/decrement step value (in D/A converter steps)for the ALC reference voltage control loop for reducing power in the event of excessive standing waves.

3.4.1 SMS Functioning

This version is an upgrade of the telemetry system incorporated in the software of the E2000 equipment, which allows to control the machine by text messages sent through the GSM network.

The SMS control is active only on a single apparatus, therefore it will not be possible to control combined systems with text messages, but they will be manageable via GSM modem or via telephone line.

This is the reason why the GSM communication will be active only when the equipment's address is "0".

Functions description

You can have access to the SMS functions by selecting "P = SET SMS PHONE NUMBERS", used for the programming of the permissions of every registered user.

+-----2 KW AMPL. <Remote Control V. 2.0 - id 0> ELENOS MAIN MENU | _____ | MAIN MENU. J = SYSTEM SERVICE ! = ANALOGIC CHANNELS CALIBRATION (CURRENT) L # = ANALOGIC CHANNELS CALIBRATION (VOLTAGE & TEMPERATURES) K = INPUT USER or SYSTEM KEY A = SETTING AND READING PARAMETERS T B = STATUS / FAILURES LIST T O = LOGOFFF = SCHEDULE(SERVICE) L = INTERRUPT ERROR (SERVICE) N = INTERNAL STATUS (SERVICE) V = SERIAL MONITOR (SERVICE) P = SET SMS PHONE NUMBERS Q = MAIN MENU (this page!)

The programming of the user accounts can be done locally, by connecting a PC to the equipment, or remotely. It will be possible, beside managing the basic functions of the machine, to enable/disable the accounts, modify the telephone numbers, change the permissions and select the alarm type or the notice to send to the user.

ACCOUNT PROGRAMMING

In order to use the equipment in the SMS mode it is necessary to digit the telephone numbers (up to 5 users) of all the people who will have access to the functions. The system will not accept any type of command from telephone numbers which are not in the list or which are, but are disabled.

Programming with a laptop:

1. Prepare an E2000 - PC connecting cable following the instructions present in the technical manual.

2. Prepare a "hyperterminal" session for a "direct connection to COMx" (set up the port to which you will connect the E2000) with the following communication parameters: 8,N,1 -9600 Baud -No local echo - No Handshaking.

3. Connect the PC to the amplifier.

4. Make sure dip switch 8 is positioned on the left (see Appendix "A". SMS communication disabled, default set up), then turn the amplifier on.

5. Follow the operations described in the "Configuration" passage.

6. Switch dip switch 8 to the right (activation of the SMS communication).

7. Connect the GSM modem to the IEEE485 port (prepare an E2000 - modem cable following the instructions present in the technical manual).

8. Make sure the modem is switched on and reset the equipment (press the "reset" key for longer than 2 seconds)

9. The display will show a message saying that the modem initialisation is running. Once the initialisation is over the display will show the Main Menu.

Programming from a remote terminal:

- 1. Prepare an E2000 Modem cable
- 2. Switch dip switch no. 8 to the right (see Appendix "A". SMS communication activated)
- 3. Switch the modem on and connect it to the amplifier
- 4. Reset (press the "reset" key for longer than 2 seconds) the amplifier and wait for the modem initialisation.

5. Connect, using the remote terminal, to the amplifier and follow the instructions described in the "Configuration" passage.

Configuration:

After having typed in the password ("K" key), press the "Q" key to go back to the Main Menu, then press "P" to enter the account configuration window.

+ ELENOS 2 KW AMPL. <remote control<="" th=""><th>V. 2.0 - id 0> MAIN MENU</th></remote>	V. 2.0 - id 0> MAIN MENU
SMS CONFIGURATION Example : +393371234567890123 Phone N.1: +3933811111111 Phone N.2: +393382222222 Phone N.3: +393383333333 Phone N.4: +3933844444444 Phone N.5: +3933855555555	Enable Enable Enable Enablethis status command globalaccount request execute echoTRUE TRUE TRUE TRUETRUE TRUE TRUE TRUETRUE TRUE TRUE TRUETRUE TRUE TRUE FALSETRUE FALSE TRUE FALSETRUE TRUE FALSE FALSEFALSE TRUE TRUE TRUEFALSE TRUE TRUE TRUE
PWR-UP ALARM: -3dB ALARM: ID STRING: ELENOS2500 Commands: PWR 1234 - set out pwr ON - on air STBY - stand-by RES - reset alarms STS - status request	TRUE FALSE COMMAND EXAMPLE: on, PWR 1800, res Sets PA on air at 1800W output and resets the alarm counter. Commands must be separated by commas. A space must be inserted between PWR and the value required. Commands are case insensitive.

(note: the fields in italic are modifiable by the user)

Type in the telephone numbers (leaving no space at the beginning) also adding the Country code (e.g. +393371234567) and programme the permissions for each number.

Permissions:

"Enable this account": if it is on 'true' mode, the account is enabled for reception and transmission.

"Enable Status Request": if it is on 'true' mode, the user will be able to check the equipment functioning status.

"Enable Command Execute": if it is on 'true' mode, the user will be able to send commands to the equipment (ON-STBY-RES-PWR) otherwise they will not be accepted.

"Enable Global Echo": if it is on 'true' mode, the user will receive notices regarding the other users' actions.

On the instance presented above, users 1 and 2 have the highest permissions since they have the power to make the equipment respond to the commands, they can check its functioning and they receive notice of all the other users.

User no.3 can not receive messages of global notice, he can not require the functioning status, but he can send command to the equipment.

User no.4 can only require the functioning status.

User no.5 would have the highest permission but his account is disabled, therefore he will have no control over the equipment.

Choose the kind of notice sent by the equipment:

PWR-UP: if it is on 'true' mode, once the equipment is connected to the network, it will send, after 2 minutes, a status message confirming the system activation.

3dB Alarm: if it is on 'true' mode the equipment will send a status message whenever the output power level of the machine is less than half of the figure set in the "POWER LIMITER".

If one wants it is possible to modify the equipment ID STRING by typing in an alphanumeric string of 10 characters maximum.

The programming is now complete; if it has been done using a remote terminal, it is preferable to end the communica-

before sending any SMS command to the equipment.

It is important to remember that the equipment will neither transmit nor receive any command if the terminal is active. Once the communication is ended one can try to send some commands to the machine.

COMMANDS:

Any enabled user can send commands to the equipment, which to confirm the reception and execution of the order, will send a status message after a short period of time.

Note: this period of time is the little while in between the reception of the command message and the emission of the status message. To this the GSM network transition time is added and can sometimes be quite long, depending on how busy the network is.

The commands currently implemented in the equipment are:

Command	Sintax	Example	Latency	Notes:
Switching-on	ON	ON -	30 s	
Stand By	STBY	STBY	10 s	
Power setting	PWR nnnn	PWR 1200	30 s	$1000W \leq PWR \leq 2200$
Alarm reset	RES	RES	10 s	
Status?	STS	STS	10 s	

The commands can be sent one by one, or, if separated by commas, several messages can be sent all in the same message:

e.g. single command: ON e.g. multiple command: ON,PWR 1500,RES

The first command will turn on the equipment, the second one will turn on the equipment, set the output power to 1500W and reset the protection counter.

Make sure you follow exactly the indicated syntax otherwise the equipment will not respond to your commands.

STATUS MESSAGE

The status message is a summarising indication of the equipment's functioning parameters and it is composed as follows:

1 ELENOS 2 PHCMD ID 02 3 Status 4 000 CORRECT WORKING 5 FWD 2000 W 6 REFL 0 W 7 V 45.0 V 8 I 70.0 A 9 T.Max RF 45 C 10 T.Max PSU 47 C 11 T.Env 27 C 12 ON

Row 1: ID STRING, and 10 characters alphanumeric string modifiable by the user.

Row 2: Message source "PhoneCoMmanD ID nn".

The ID of the user who sent the command is visualised. The messages coming from the equipment itself have "00" as ID. In this example the status message indicated that the command has been sent by user no. 2.

Row 3: Alarm type or notice (Pwr Up, -3dB Alarm, Status) that are sent.

Row 4: Status row. Currently active highest priority alarm.

Row 5: Direct power.

Row 6: Reflected power.

Row 7: Rf Power supply voltage

- Row 8: Rf total current.
- Row 9: Rf groups maximum temperature.
- Row 10: Power supply maximum temperature.
- Row 11: Ambient Temperature.
- Row 12: Functioning Status (ON, STBY).

NOTE ON MODEMS AND THE SIM CARD:

Some modems, like the Siemens TC35, can not memorise a configuration predefined by the user, therefore the E2000 must re-initialise them whenever it gets switched on. If by any chance, the connected modem gets turned off, it will not be able to communicate neither via terminal nor via text messages since there will no longer be any configuration. If this ever happens as a consequence of maintenance operations or anything else, do not reset or switch the E200 off. Once the modem is reconnected, you will simply need to select the "GSM MODEM CONFIG" menu from the front panel, press "ENTER" once to enter the menu and once more to start the initialisation procedure.

The process will end when the "INIT" field is on the "TRUE" mode.

Check the modem communication is correct by entering the "GSM FIELD STRENGHT" menu and by reading the level of reception of the field. This function is useful for the correct setting of the antenna too, and as far as this is concerned we recommend that you use a directive antenna pointed at the closest GSM repeater.

If the level remains on the "-113dBm" indicator, there could be either serial communication problems to and from the E2000, antenna problems or the modem could be having problem registering on the network.

We would like to remember that the PIN number of card to be inserted in the Modem must be disabled, otherwise it will be impossible for the modem to register on the network.

If the field of reception is satisfactory (-80dBm at least) the equipment will be ready to work.

We would like to remember that in case of heavy traffic in the GSM network it could be hard, if not impossible, to obtain the connection via the terminal and/or the messages may be considerably delayed. Such drawbacks do not depend on the device or the chosen modem but are characteristic of the GSM network and can appear in different ways depending on the network administrator or the cell serving the working zone of the modem.

Appendix A

Configuration Dip Switch.

Dip Switch 1 - 6

Dip switches from 1 to 6 are used for the addressing of the equipment when it operates in a combined system, or when the same modem is used to monitor several machines.

The address is inserted according to the binary code and the weight of every switch equals the power of 2 raised to n-1, where "n" corresponds to the switch number on the "ON" mode.

Therefore if one wants to set the equipment with 22 as address, one will have to programme the switches as follows:

 $1 = OFF (weight 2 ^0 = 1)$ $2 = ON (weight 2 ^1 = 2)$ $3 = ON (weight 2 ^2 = 4)$ $4 = OFF (weight 2 ^3 = 8)$ $5 = ON (weight 2 ^4 = 16)$ $6 = OFF (weight 2 ^5 = 32)$ Totale = 2 + 4 + 16 = 22

The address 0 (default) is the one of the equipment alone. For combined systems or for several machines connected to the same modem one will have to choose the addresses going from 1 to 63.

We would like to remember that the management of the equipment via text messages will be active only for single machines having the address "0".

**Dip switch 7

Power supplier energy selection:

OFF = TR version ON = DR switching version

**WARNING!

This dip switch is set up at the factory according to the kind of power supplier that goes with the amplifier and must not be modified, unless the power supplier is changed.

Dip switch 8

Activation of text messaging management: OFF = disabled SMS communication (default). ON = Enabled SMS communication.

It is possible to disable the SMS communication whenever there is not a GSM modem connected to the equipment or in case one is not interested in this kind of service, so that there is no need to wait for the modem initialisation during the powering up of the machine.

3.5.

Analog measurements connector

This connector is located on the front panel of the E2500 amplifier and enables connection to a telemetry system with analog inputs.

It is possible to select the various measurement banks (0- modules currents, 1 - power supply voltage/current, 2 - temperature, 3 - power/efficiency) by connecting the two input selectors SEL 0 and SEL 1 to ground.

The electrical characteristics of the port are as follows:

SEL0	SEL1	MON 0	MON 1	MON 2	MON 3	MON 4	MON 5	MON 6	MON 7
CLOSED	CLOSED	FWD	REF	IN PWR	ERR V	VDS	Id	Tmax RF	Tmax PSU
CLOSED	OPEN	I PSU A	I PSU B	I PSU C	VDS	+5V	+12V	-12V	Currents
									sum
OPEN	CLOSED	Temp	Temp	Temp	None	Temp	Temp	Temp	None
		PSU A	PSU B	PSU C		Env	RF A	RF B	
OPEN	OPEN	I al	I a2	I a3	I a4	I b1	I b2	I b3	I b4

Full scale voltage = 2VRF Modules currents I A1..3 I B1..3 = 20A f.s.
Power supply currents (I PSU A..C) = 100A f.s.
Mosfet supply voltage (Drain supply voltage VDS) = 100V f.s.
Aux power supplies +5V +12V -12V = 20V f.s.
Temperatures T PSU 1..3 T ENV T RF A..B = 100°C f.s.
Forward power = 2500W f.s.
Reflected Power = 200W f.s.
Driver power (IN PWR) = 200W f.s.
ALC limiting voltage = 2V f.s.

3.6. Diagnostics connector

DI_TX_ON:	Short-circuit with DI_COMMON for greater than 100 ms to enable transmission.
DI_TX_OFF:	Short-circuit with DI_COMMON for greater than 100 ms to put into stand-by
DI_RESET:	Short-circuit with DI_COMMON for greater than 100 ms to reset the protection counter
DI_ENABLE:	Short-circuit with DI_COMMON to enable operation of the unit. In the case of stand-alone operation, it is necessary to short-circuit these two pins permanently; if used as a driver, the pin should be connected to the "INTERLOCK" input of the equipment being driven.
DI COMMON:	Common contact for the inputs.
DŌ_ON:	Shorted to DO_COMMON when the following condition is verified: STAND-BY = TRUE BLOCKED=FALSE DI ENABLE=CLOSED.
DO_ON_AIR:	Shorted to DO_COMMON when the unit is not in STAND BY condition.
do_failure:	Shorted to DO_COMMON when the unit is blocked. The front panel display, in "Alarms List" menu, will show the "BLOCKED" message.
DO3dB:	Shorted to DO_COMMON when the unit is transmitting and the output power is less than half respect to the value programmed in the "POWER LIMITER SETTINGS" menu. The delay for this alarm is about 60 seconds.
DO_COMMON:	Common contact for the outputs.

Note: The maximum current applied to any output contact must not exceed 500mA.

4.1. Introduction

This is an amplifier designed to be easily transported and installed. The three sections of which it consists (power supply, RF section and ventilation panel) can be easily separated to facilitate transport.

Particular care has been taken in the development of the RF section, featuring eight amplifier modules able to deliver a combined continuous output power of more than 2700W. The microstrip combiners are gold-plated to avoid oxidization by atmospheric agents and can support any conditions of imbalance caused by the breakdown or mal-functioning of one or more of the amplifier modules.

The RF section features its own control and protection circuit which guarantees constant supervision of the amplifier modules, even in the case of a failure of the main control logic.

The power supply section is available in two versions, the direct switching version (DR) or the linear, transformer version (TR).

Both are generously over-specified and, in the event of breakdown of a subsection (three for the switching supply, two for the linear one), it is still possible to generate forward power.

The switching version features several interesting characteristics and functions: it is possible to configure the power supply to work at 220V single phase, 380V three-phase and 220V three-phase. The microprocessor is able to control the efficiency of the amplifier by varying the voltage of the power supply and can manage temperature protection by progressively limiting the output power.

The front panel includes the logic control unit and the ventilation system. A V25 (8086) microprocessor has been used which, thanks to its performance, provides a remote control function, as standard, on all versions of the series.

4.1.1. As far as possible, the microprocessor attempts to maintain operation of the unit Protection even in extreme conditions, gradually reducing the output power to a maximum of 3dB with respect to the programmed output power. Beyond this limit, the amplifier will shut itself down and if during the course of several hours, the shutdown condition occurs more than three times, the unit will shutdown indefinitely, requiring operator intervention. The protection counter can be reset and an attempt made to restart the unit, even via remote control; a diagnosis of the problem can also be made in this way, before visiting the site. 4.1.2. The directional coupler for measuring forward and reflected power, is thermo-Measurements compensated in order to resist variations of ambient temperature. All the transducers present in the unit are designed for total immunity to RF fields to prevent problems arising from false readings. All operational parameters, besides being displayed on the front panel, are available in analog form, for users wanting to connect the unit to a telemetry system.

> 4.1.3. Telemetry

Thanks to the power of the microprocessor, it is possible to connect a simple but efficient remote control system to all versions, as standard, with a user interface based on the common ANSI terminal.

This solution allows anyone in possession of any computer, with any operating system, to interact with the unit.

All that is needed is standard communication software which is able to emulate an ANSI terminal. Examples of DOS or WINDOWS software include Procomm, Telix and Hyperterminal.

The telemetry allows all the operating parameters of the unit to be displayed; it allows the output power to be adjusted and the unit to be put into stand-by. The connection can be made via a normal telephonic modem, or a GSM modem. For connecting to a pre-existing telemetry system, all the readings are available in analog form, via a connector located on the front panel. The power levels (forward or reflected) are linear to facilitate display on a standard linear scale.

4.1.4. In addition to the alphanumeric 24x2 display, the following indicator leds are visible on *Indicators* the front panel:

OnAir = Transmitter ready to operate.

- Fault = If flashing, an alarm is, or has been, active. If the cause of the alarm is no longer active, the led will switch off when the "RESET" button is pressed momentarily.
- Mains = The line supply voltage is present and the diagnostic board program has run correctly.
- Pwr = driver power level:

Yellow: driver power is insufficient to reach the power programmed in "POWER LIMITER SETTINGS". Warning ! In the event of failure of one or more of the RF modules, it will be impossible to reach maximum output power, even if the unit is over-driven. In this case, the value programmed in the "POWER LIMITER SETTINGS" menu should be reduced.

Green: driver power is at the correct level and the power limiter is in operation (error voltage "Err'' > 0V).

Red: Driver power is excessive for the required output power. The maximum power level that the input of the unit will tolerate is about 100W; if the input power is below this limit, the unit will continue to operate correctly, even if excess driver power is indicated.

StBy = The unit is in stand by

4.3. Power supply section	The E2500 unit is available in two versions: the linear power supply version (E2500TR) and the switching power supply version (E2500DR). It is possible to modify the latter to operate in three-phase or single phase confi- guration at 220 or 380 V. The linear power supply version, however, can only operate at 220 or 380V three-phase.
4.3.1. Linear power supply	This comprises two rugged sections connected in parallel. The transformers and rectifier are protected against over-temperature and current overload (45 A max. per section).
4.3.1. Switching power	This consists of three units connected in parallel and balanced by a current- sharing circuit. Each section is protected against over-temperature and over-current.

supply

sharing circuit. Each section is protected against over-temperature and over-current.

4.3.2. Auxiliary power supply

רייניים המסמה

This board is slightly different in the two versions, DR and TR, and supplies the unit with all the supply voltages for the control circuits and also receives the signals from the user interface connector (USER INTERFACE) and transfers them to the CPU.

4.4. Radio frequency section Comprises two banks of 1000W, each containing a total of eight 300W modules. The power combiners are designed to allow operation of the unit in any unbalanced condition caused by the failure of one or more RF modules.

This is a classic Wilkinson splitter with eight outputs using micro-strip technology

4.4.2. These are designed using planar technology for the input impedance transformer *RF modules* and a transmission line transformer for the output matching circuit.

4.4.3. Output combiner

This is a Wilkinson combiner constructed partly with microstrip technology and partly using coaxial cable.

To ensure better corrosion resistance, the microstrip section is gold-plated.

4.4.4. Low-pass filter and directional coupler

This filter removes the harmonics generated by the non-linear operation of the amplifier and guarantees a level of residual harmonics and spurious signal content within current regulations.

The directional coupler is thermally compensated and allows reading of both forward and reflected power.

These boards are housed in the front part of the RF section and individually mea-

4.4.5. Shunt boards

sure the currents drawn by the 8 power modules.

4.4.6. CPU board

The board is designed around the NEC V25 (Intel 8086), a powerful microprocessor which enables easy and reliable control of the unit.

4.4.7. ALC board

This board, housed in the front of the RF section, gathers and normalises the readings from all the sensors present in the RF section, stabilizes the output power at the value set by the user, protects the RF section in the event of excessive SWR and interacts with the CPU board for displaying data.

Component list	Ref.	Description	
	BRDG1	130MT80KB	
	BRDG2	130MT80KB	
	C1	15000uF	
	C2	15000uF	
	C3	15000uF	
	C4	15000uF	
	C5	100nF	
	C6	100nF	
	C7	100nF	
	F1	6.3AT	
	F2	6.3AT	
	F3	6.3AT	
	F4	6.3AT	
	F5	6.3AT	
	F6	6.3AT	
	F/		
		500mAI	
	F8	500mAI	
	FI0		
]]		
	JZ		
]3		
	14		
	15	CON4	
		CON4	
	18	CIRCLE	
	J32	CON MC4	
	K1	Telemecanique LC1 D1810M7	
	K2	OMRÓN MK3P5-S	
	L2	500uH	
	L1	500uH	
	R1	50/20W	
	R2	50/20W	
	R3	50/20W	
	R4	330/10W	
	R5	330/10W	
		0.0012R	
		0.0012R	
	12		
	13 T		
	$\frac{14}{-\tau_{c}}$		
	T7	PR 220V sec $15 + 15 \vee 24$	

Component list **Ref**.

Description

	•	
D1	40EPS08	
D2	40EPS08	
D3	40EPS08	
F4	VD. CONFIG	
F5	VD. CONFIG	
F6	VD. CONFIG	
F7	VD. CONFIG	
J1	CON3	
J2	CON3	
J4	CON3	
J3	CON4	
K1	Telemecanique LC1 D1810M7	
S1	INT. MAGNETO-TERMICO	
T1	PR. 220V sec 15 + 15 V 2A	

Ref.

Component list

Description

C1	1u5 400V	
C2	1u5 400V	
C2	5u 400V	
C1	5u 400V	
J1	CON4	
J1	CON4	
M1	EBM A2E200-AI38-01TW	
M2	EBM A2E200-AI38-01TW	
M2	EBM A2E200-AI86-70TW	
M1	EBM A2E200-AI86-70TW	

5. ELECTRICAL SCHEMATICS - 5.4. Auxiliary power supply (linear version)

Use and maintenance manual


	``````````````````````````````````````	,
Board Code: E2K 6A000_1	Model: E2500	Rev 1
Proj. Engr. : A.Tomassini	Approved : A.Giovannelli	
Date: Wednesday, November 15, 2000	Sheet 4 of 5	



ELENS



Engineering Department PHONE: +39 0532 829 965 - FAX: +39 0532 829 177 E-Mail: support@elenos.com



Component list	Ref.	Description	
	Cl	1.5	
	$\frac{CI}{C2}$	InF	
	$\frac{CZ}{C3}$	lnF	
	$\frac{C3}{C4}$	1nF	
	$\frac{C_{4}}{C_{5}}$	lnF	
	$\frac{C6}{C6}$	lnF	
	C17	1nF	
	C32	lnF	
	C36	lnF	
	C37	lnF	
	C38	lnF	
	C39	lnF	
	C40	lnF	
	$\frac{C41}{C40}$		
	$\frac{C42}{C42}$		
	$\frac{C43}{C44}$		
	$\frac{C40}{C47}$		
	$\frac{C47}{C48}$	lnF	
	$\frac{C+0}{C49}$	lnF	
	$\frac{C17}{C50}$	lnF	
	C51	lnF	
	C52	lnF	
	C53	1nF	
	C55	lnF	
	C56	lnF	
	C57	lnF	
	C58	1nF	
	C59	InF	
	$\frac{C60}{C(1)}$	Inf	
	$\frac{C01}{C42}$		
	$\frac{C02}{C67}$	101 1.pE	
	$\frac{C07}{C68}$	lnF	
	$\frac{C60}{C69}$	lnF	
	C7	100nF	
	<u>C8</u>	100nF	
	C10	100nF	
	C11	100nF	
	C12	100nF	
	C13	100nF	
	C14	100nF	
	$\frac{C15}{C14}$	100nF	
	$\frac{C16}{C10}$	100nF	
	$\frac{C18}{C21}$		
	$\frac{C21}{C22}$	100nF	
	$\frac{CZZ}{C23}$	100nF	
	$\frac{C23}{C24}$	100nF	
	C25	100nF	
	C26	100nF	
	C27	100nF	
	C28	100nF	
	C29	100nF	
	C30	100nF	

Ref.

Component list

Description

C31	100nF	
C35	100nF	
C54	100nF	
C9	lυF	
C19	lυF	
C20	lυF	
C44	lυF	
C45	lυF	
C33	100uF 25V	
C34	100uF 25V	
C70	100uF 25V	
C71	100uF 25V	
C63	1000uF 25V	
C64	1000uF 25V	
C65	1000uF 25V	
C66	1000uF 25V	
DL1	KP2012SGD	
DL2	KP2012SGD	
DL3	KP2012SGD	
DL6	KP2012SGD	
DL7	KP2012SGD	
DL8	KP2012SGD	
DL9	KP2012SGD	
DLIO	KP2012SGD	
DLII	KP2012SGD	
DL12	KP2012SGD	
	KP20123GD	
$\frac{DL14}{DL15}$		
D1	PMI 4148	
D2	PMI 4148	
D3	PMI 4148	
D4	PML4148	
D5	PML4148	
D6	PML4148	
D7	PML4148	
D8	PML4148	
D9	PML4148	
D10	PML4148	
D11	PML4148	
D12	PML4148	
D13	PML4148	
D14	PML4148	
D15	PML4148	
DI6	PML4148	
	PML4148	
	4./V	
010		
F2	FLICE	
F1	FI ISF	
<u> </u>	1032	



Engineering Department PHONE: +39 0532 829 965 - FAX: +39 0532 829 177 E-Mail: support@elenos.com



Component list	Ref.	Description	
		HOLE3.5MM	
	H3		
	H4	HOLE3.5MM	
	<u>ISO1</u>	TIP181	
	ISO2	TLP181	
	ISO3	TLP181	
	ISO4	TLP181	
	JP1	JUMPER	
	JP2	JUMPER	
	J1	II4M-R	
	J2	II4M-R	
	<u>J3</u>	II4M-R	
	J4 15	II4M-R	
	J5 17	114M-R	
	<u>18</u>		
	16	W/4/M-R	
	<u> </u>	5+5M-R	
	J10	17+17M-R	
	J11	W3M-R	
	L1	100uH	
	L2	100uH	
	L3	100uH	
	L4	100uH	
	L5	100uH	
	L6	100uH	
	L/	1000H	
	$\frac{1}{0}$	BC846	
	$\frac{\alpha}{\Omega^2}$	BC846	
	Q4	BC846	
	Q3	BC856	
	RL1	JW1FSN-12VDC	
	RL2	JW1FSN-12VDC	
	RL3	JW1FSN-12VDC	
	RL4	OMRON G5V-1 12VDC	
	RL5	OMRON G5V-1 12VDC	
	RL/ R1		
	R2	1K	
	R3	1K	
	R4	1K	
	R11	1K	
	R14	1K	
	R19	1K	
	R21	1K	
	R24	1K	
	R29	1K	
	K34		
	KJJ 124		
	RJO PIO		
	1140	IN	





R42	1K
R44	1К
R46	1К
R48	1К
R52	1К
R53	1К
R54	1К
R55	1K
R58	1K
R63	1К
R68	1K
R70	1K
R71	1К
R72	1K
R73	1K
R5	100R
Ró	100R
R7	100R
R8	100R
R50	100R
R51	100R
R62	100R
R9	2M2
R22	2M2
R26	2M2
R10	1.13K
R23	1.13K
R27	1.13K
R12	10.2K
R25	10.2K
R28	10.2K
R13	2.2K
R65	2.2K
R74	2.2K
R15	20К
R18	20К
R30	20К
R33	20К
R16	22R
R17	22R
R31	22R
R32	22R
R20	1.8K
R37	4.7K
R41	4.7K
R43	4.7K
K45	4./K
R47	4.7K
K49	4./K
R64	4.7K
R66	4.7K
K39	4/0R
R38	4/0R
K56	3.9К

Engineering Department PHONE: +39 0532 829 965 - FAX: +39 0532 829 177 E-Mail: support@elenos.com





Component list

Ref.	Description	
R57	2.2M	
R61	2.2M	
R59	10K	
R60	10K	
R67	100	
R69	470	
U1	LMC6482IN	
U2	LMC6482IN	
U3	LMC6482IN	
U4	LM324	
U5	LM7912C	
U6	LM1085-12T	













Page 93







Component list	Ref.	Descript	ion
	Cl	lnF	
	C2	lnF	
	C3	lnF	
	C4	lnF	
	C5	lnF	
	<u>C6</u>	lnF	
	-C15	1ni 1pE	
	<u>C19</u>	lnF	
	C21	lnF	
	C22	1nF	
	C23	lnF	
	C24	1nF	
	C25	lnF	
	<u> </u>		
	$\frac{C_{20}}{C_{20}}$	lnr lnF	
	<u>C30</u>	lnF	
	C31	1nF	
	C32	lnF	
	C34	lnF	
	C35	lnF	
	<u>C36</u>	<u>1nF</u>	
	$\frac{C37}{C42}$	Int 1E	
	-C42	lnr lnF	
	<u>C43</u>	lnF	
	C45	1nF	
	C8	luF	
	C11	lυF	
	C12	1uF	
	<u>C9</u>	100nF	
	$\frac{C10}{C12}$	100nF	
	$-\frac{C13}{C14}$	100nF	
	<u>C20</u>	100nF	
	C26	100nF	
	C33	100nF	
	C17	100uF 25V	
	C18	100uF 25V	
	<u>C46</u>	100uF 25V	
	$\frac{-C47}{-C38}$	1000F 25V	
	$-\frac{C30}{C39}$	10000F 25V	
	<u>C40</u>	1000uF 25V	
	C41	1000uF 25V	
	DL1	KPT20125GD	
	DL2	KPT20125GD	
	DL3	KPT20125GD	
	DL4	KPT20125GD	
	DL5	KPI20125GD	
		KPT20123GD	
	DL11	KPT20125GD	



Component list	Ref.	Description	
	DL14	KP120125GD	
		KPT20125GD	
		KPT20125D	
		KPT20125D	
	DI 12	KPT20125D	
	DL13	KPT20125D	
	D1	PML4148	
	D2	PML4148	
	D3	PML4148	
	D4	PML4148	
	D5	PML4148	
	D6	PML4148	
	D/	PML4148	
	<u>D8</u>	PML4148	
	D9	PIVIL4148	
		PML 4140	
	D11	PMI 4148	
	D13	BRIDGE	
	F1	FUSE	
	F2	FUSE	
	H1	HOLE3.5MM	
	H2	HOLE3.5MM	
	H3	HOLE3.5MM	
	H4	HOLE3.5MM	
	ISO1	TLP180	
	ISO2	TLP180	
	ISO3	TLP180	
	1504		
		JUMPER	
		CON4	
	J2	CON4	
	J3	CON4	
	J4	CON2	
	J5	W3M-R	
	J11	W3M-R	
	J6	5+5M-R	
	J7	5+5M-R	
	<u>J8</u>	5+5M-R	
	J9	5+5M-K	
	<u> </u>	17+17M-K	
		100011	
	1.3	1000H	
	14	1000H	
	L5	100uH	
	L6	100uH	
	PWR1	NME1212S	
	Q1	BC856	
	Q3	BC856	



Component list	Ref.	Description	
	Q5	BC856	
	$-\frac{\alpha}{\Omega^2}$	BC846	
	Q4	BC846	
	Q6	BC846	
	RL1	JW1FSN-12VDC	
	RL2	JW1FSN-12VDC	
	RL3	OMRON G5V-1 12VDC	
	RL4	OMRON G5V-1 12VDC	
	RL5	OMRON G5V-1 12VDC	
	RLO		
	R1 R2	1K	
		1K	
		1K	
	R8	1K	
	R11	1K	
	R12	1K	
	R15	1K	
	R20	1K	
	R21	1K	
	R26	1K	
	R28		
	R3U		
	R32	1K	
		1K	
		1K	
	R42	1K	
	R43	1K	
	R48	1K	
	R55	1K	
	R56	1K	
	R4	1.8K	
		2M2	
		2M2	
	R7	1 13K	
	R14	1.13K	
		1 13K	
		10.2K	
	R16	10.2K	
	R19	10.2K	
	R10	2.2K	
	R22	10K	
	R23	10K	
	R33	10K	
	R34	IOK	
	R3/		
	R11	10K	
	R44	10K	
		10K	
		10K	
	R52	10K	
	R53	10K	



Description

	-	
R24	4.7K	
R25	4.7K	
R27	4.7K	
R29	4.7K	
R31	4.7K	
R35	4.7K	
R39	4.7K	
R46	4.7K	
R47	4.7K	
R51	4.7K	
R54	4.7K	
U1	LMC6482IN	
U2	LMC6482IN	
U3	LM7912C/TO220	
U4	LM1085-12T	






Ref.	Description	
CN1	CONN DSUB 9-R	
CN2	CONN DSUB 15-R	
$\frac{CX1}{CX1}$	10uF	
$\frac{C}{C1}$	100nF	
$\frac{C2}{C2}$	100nF	
$\frac{C_2}{C_3}$	100nF	
$\overline{C4}$	100nF	
<u>C5</u>	100nF	
<u>C6</u>	100nF	
C7	100nF	
<u>C8</u>	100nF	
<u>C9</u>	100nF	
C18	100nF	
C19	100nF	
C30	100nF	
C31	100nF	
C60	100nF	
C61	100nF	
C62	100nF	
C63	100nF	
C64	100nF	
C65	100nF	
C66	100nF	
C67	100nF	
C68	100nF	
C69	100nF	
C70	100nF	
C73	100nF	
C74	100nF	
C75	100nF	
C76	100nF	
C77	100nF	
C78	100nF	
C80	100nF	
C82	100nF	
C83	100nF	
C84	100nF	
C85	100nF	
C86	100nF	
C87	100nF	
C88	100nF	
C89	100nF	
C90	100nF	
C91	100nF	
C92	100nF	
C93	100nF	
C94	100nF	
C95	100nF	
C96	100nF	
C97	100nF	
C98	100nF	
C99	100nF	
C100	100nF	
C101	100nF	
C102	100nF	





Component list	Ref.	Description	
1	C103	100nF	
	C104	100nF	
	C105	100nF	
	C106	100nF	
	C108	100nF	
	C109	100nF	
	C111	100nF	
	C113	100nF	
	C114	100nF	
	C115	100nF	
	<u>C116</u>	100nF	
	<u>C117</u>	100nF	
	<u>C118</u>	100nF	
	<u>CI2I</u>	IOOnF	
	<u>CI22</u>	100nF	
	C124	100nF	
	$\frac{C126}{C107}$	100nF	
	$\frac{C127}{C120}$	100nF	
	$\frac{C130}{C121}$	100nF	
	$\frac{C131}{C141}$	100nF	
	$\frac{C141}{C154}$	100nF	
	$\frac{C154}{C155}$	100nE	
	$\frac{C155}{C159}$	100nE	
	$\frac{C139}{C160}$	100nE	
	$\frac{C100}{C162}$	100nE	
	$\frac{C102}{C163}$	100nF	
	$\frac{C100}{C10}$	lnF	
	$\frac{C10}{C11}$	lnF	
	$\frac{C12}{C12}$	lnF	
	$\frac{C12}{C13}$	lnF	
	C14	lnF	
	C15	lnF	
	C16	lnF	
	C17	lnF	
	C20	lnF	
	C21	lnF	
	C22	lnF	
	C23	lnF	
	C24	lnF	
	C25	lnF	
	C26	lnF	
	C27	lnF	
	C28	1nF	
	<u>C29</u>	1nF	
	<u>C32</u>	lnF	
	<u>C33</u>		
	<u>C34</u>		
	$\frac{C35}{C35}$		
	$\frac{C36}{C37}$		
	$\frac{C3}{C32}$		
	$\frac{C39}{C40}$		
	$\frac{C40}{C41}$		
	$\frac{C41}{C42}$	100 1pF	
	C4Z	1111	



Component list

Ref.	Description	
C43	lnF .	
C44	lnF	
C45	lnF	
C46	lnF	
C47	1 nF	
C48	lnF	
C49	1nF	
$\frac{C50}{C50}$		
$\frac{C51}{C51}$		
$\frac{C52}{C52}$		
$\overline{C53}$		
$\overline{C54}$		
<u>C55</u>		
$\frac{C56}{C56}$	lnF	
$\frac{000}{C57}$	lnF	
$\overline{C58}$		
$\frac{000}{C59}$		
$\frac{C128}{C128}$		
$\frac{C132}{C132}$		
C133	1nF	
C134	1 nF	
C135	1nF	
C136	1nF	
C137	lnF	
C138	1nF	
C139	1nF	
C144	1nF	
C145	lnF	
C146	1nF	
C147	1nF	
C148	1nF	
<u>CI49</u>	InF	
C150		
<u>CI51</u>		
C152		
C153		
$\frac{C}{C}$	1000F 25V	
$\frac{C140}{C142}$	1000F 25V	
C142	1000F 25V	
$\frac{C130}{C72}$	470uE 16V	
$\frac{C72}{C79}$	10uE 16V	
$\frac{C}{C107}$	100F 16V	
$\frac{C107}{C119}$	100F 16V	
$\overline{C123}$	100F 16V	
C161	100F 16V	
<u>C81</u>	10F	
$\frac{C110}{C110}$	1uF	
C125	1uF	
C143	1uF	
C112	22pF	
C120	22pF	
C129	68pF	
C157	68pF	
C158	68pF	
<u>C164</u>	68pE	





Component list	Ref.	Description	
	DX1	1N4007	
	DX2	1N4007	
	DX3	9V1	
	DZ1	ZRB500F	
	D1	1N4148	
	D2	1N4148	
	D3	1N4148	
	D4	1N4148	
	D5	1N4148	
	D6	1N4148	
	D7	1N4148	
	D8	1N4148	
	D9	1N4148	
	D10	1N4148	
	D11	1N4148	
	D12	1N4148	
	D13	1N4148	
	D14	1N4148	
	D15	1N4148	
	D16	1N4148	
	DI/	IN4148	
		IN4148	
		HOLE3.2MM	
	HZ	HOLE3.2MM	
	JI I IP2		
		II IMPER	
	IP4	ILIMPER	
	<u></u>	CON24AP	
	J2	CONN RCPT 17x2	
	<u>J</u> 3	CON16	
	J4	STRIP FEMALE 2.54 RIGHT 26P	
	L1	100nH	
	L2	100nH	
	L3	100nH	
	QX2	BC337	
	QX1	BC337	
	QX3	BSP316	
	Q1	BC846	
	Q2	BC846	
	RV1	10K	
	RX2	10K	
	RV2	10K	
	R57	IOK	
	R60	IUK	
	R62	IUK	
	ROJ DZ1		
	RAA		
	R68	10K	
	R85	10K	
	R90	10K	
	R91	10K	

Ref.	Description	
R96	10K	
R97	10K	
R98	10K	
R99	10K	
R103	10K	
R104	10K	
P105	101	
RTUS	10K	
R100	10K	
RIIO	IUK	
RII9	TÜK	
R120	TOK	
R121	10K	
R122	10K	
R123	10K	
R124	10K	
R125	10K	
R126	10K	
R127	10K	
R128	10K	
R120	10K	
R127	10K	
P120	101	
R137 D140	10K	
R140	10K	
R141	10K	
R142	10K	
R143	IUK	
R144	TUK	
R145	TÜK	
R146	TÜK	
R14/	TOK	
R148	TOK	
R184	TOK	
R185	TOK	
R18/	TOK	
R188	TOK	
R189	TOK	
R192	10K	
R193	10K	
RX1	100K	
R1	100K	
R2	100K	
R3	100K	
R33	100K	
R35	100K	
R56	100K	
R58	100K	
R59	100K	
R61	100K	
R160	100K	
R161	100K	
RX3	3K3	
R5	1K	
R6	1K	
R8	1K	
R9	1K	
R10	1K	





Component list	Ref.	Description	
	R21	1K	
	R36	1K	
	R37	1 K	
	R45	1K	
	R95	1K	
	R100	1K	
	R108	1K	
	R113	1K	
	R116	1K	
	R117	1K	
	R150	IK	
	RI51		
	RIJZ		
	RIDD <u> <u> </u> </u>		
	R154 R155	1K	
	R156	1.K	
	R150 R157	1K	
	R158	1K	
	R159	1K	
	R163	1K	
	R11	22R	
	R12	22R	
	R38	22R	
	R13	100R	
	R14	100R	
	R19	100R	
	R20	100R	
	R22	TOOR	
	R43	IOOR	
	R44	IOUR	
	R40 P47	100K	
	R87	100R	
	R102	100R	
	R131	100R	
	R132	100R	
	R133	100R	
	R134	100R	
	R164	100R	
	R165	100R	
	R166	100R	
	R167	100R	
	R168	100R	
	R169	TOOR	
	RI/0	IOUR	
	$\frac{\text{RI/I}}{\text{D170}}$	IUUR	
	RI/Z	100R	
	R173 P174	100R	
	$\frac{R174}{R175}$	100R	
	R176	100R	
	R177	100R	
	R178	100R	
	R179	100R	
	R180	100R	



## Component list

Ref.	Description	
R181	100R	
R182	100R	
R183	1008	
R15	2K	
P16		
R17		
R18	2K	
R23	2K	
R24	2K	
R25	2K	
R26	2K	
R39	2K	
R40	2K	
R41	2K	
R42	2K	
R48	2K	
R49	2K	
R50	2K	
R69	2K	
R70		
D71		
R/2		
R/3	ZK	
K/4	2K	
K/5	ZK	
R/0	2K	
R//	2K	
R/8	2K	
R/9	2K	
R80	2K	
R81	2K	
R82	2K	
R83	2K	
R84	2K	
R88	2K	
R92	2K	
R93	2K	
R94	2K	
R27	680R	
R28	680R	
R29	680R	
R30	680R	
R31	680R	
R51	680R	
R52	680R	
R53	680R	
R54	680R	
R55	680R	
R32	2K2	
R34	2K2	
R67	20K	
R101	20K	
R109	20K	
R149	20K	
R86	12K	
R89	511K	

. ..





Component list	Ref.	Description	
	R107	47K	
	R111	1.82K	
	R112	1.82K	
	R114	220K	
	R115	470K	
	R118	82K	
	R135	470R	
	R136	470R	
	R137	470R	
	R138	470R	
	R162	470R	
	R186	470R	
	R191	4K7	
	R190	4K7	
	TP1	CONN PLUG 1	
	TP2	CONN PLUG 1	
	U1	TD62083AF	
	U2	74HC273M	
	U9	74HC273M	
	U12	74HC273M	
	U3	74HC541M	
	U4	74HC541M	
	U26	74HC541M	
	U5	74HC245M	
	<u>U6</u>	MS6M8512	
	U7	AM29F040	
	U8	LM340S-5	
	010	74HC138M	
	UII	LM/301BIM5	
	013	74HC04M	
	014	AI28HC64B-/0JC	
	015	LMC/TOTBIM5	
	016	LMC/101BIM5	
		LMC/101BIM5	
	020	LMC/101BIM5	
	030	LMC/101BIM5	
		ILV56201	
		D/0320L-8	
		CD4051M	
	022	CD4051M	
	$\frac{023}{104}$	CD4051M	
	$\frac{024}{105}$	CD4051M	
		$\frac{FALCE10V0Q-10JC/4}{TLV0E401}$	
	027	1 LV Z 3 4 0 1 MANY 4 9 5	
		IVIAA400 MANY405	
	1123	TI C5429D\\/	
	1134		
	1135	7/HC5/0	
	V1	16MH7	
	1.1		





















Tel +39 0 Website	nendola 9 44028 Poggio Renatico (FE) Italy 532 829965 Fax +39 0532 829177 WWW.ELENOS.COM		
Title: ALC - POWER MEASURE AMPLIFIERS			
Board Code: E2K 5A000_1	Model: E2500		
Proj. Engr. : A.Tomassini	Approved : A.Giovannelli		
Date: Wednesday, November 15, 2000	Sheet 4 of 5		





Engineering Department PHONE: +39 0532 829 965 - FAX: +39 0532 829 177 E-Mail: support@elenos.com



Component list	Ref.	Descrip	otion	
	C1	1nF		
	C2	1nF		
	<u>C3</u>	1nF		
	<u>C4</u>			
	<u> </u>			
	$-\frac{Co}{C7}$			
		1nF		
		101 1pE		
	$-\frac{C_{f}}{C_{10}}$	100 10F		
	<u>C12</u>	1nF		
	<u>C13</u>			
	<u>C14</u>			
	C15	1nF		
	C16	1nF		
	C17	1nF		
	C18	1nF		
	C19	1nF		
	C20	1nF		
	C21	lnF		
	C22	lnF		
	C23	1nF		
	C26	1nF		
	C27	1nF		
	C28	1nF		
	<u>C29</u>			
	$-\frac{C30}{C31}$			
	<u> </u>			
	$\frac{C32}{C33}$	1nF		
	$-\frac{C33}{C34}$	100 1pE		
	<u> </u>	1nF		
	<u>C45</u>			
	C46	1nF		
	C48	lnF		
	C51	1nF		
	C52	lnF		
	C53	lnF		
	C65	lnF		
	C75	lnF		
	C81	1nF		
	C82	1nF		
	<u>C83</u>	1nF		
	<u>C84</u>			
	$-\frac{C80}{C97}$			
		101 1pE		
		100 10E		
	<u> </u>	1nF		
	C103	1nF		
	<u>C11</u>	100nF		
	C24	100nF		
	C25	100nF		
	C35	100nF		



Ref.

Description

C36	100nF	
C38	100nF	
C39	100nF	
C41	100nF	
C43	100nF	
C47	100nF	
C50	100nF	
C54	100nF	
C57	100nF	
C58	100nF	
C59	100nF	
C60	100nF	
C62	100nF	
C63	100nF	
C67	100nF	
C68	100nF	
C69	100nF	
C70	100nF	
C71	100nF	
C72	100nF	
C73	100nF	
C74	100nF	
C76	100nF	
C77	100nF	
C78	100nF	
C79	100nF	
C89	100nF	
C90	100nF	
C92	100nF	
C94	100nF	
C95	100nF	
C96	100nF	
C97	100nF	
C98	100nF	
C100	100nF	
C101	100nF	
C104	100nF	
C105	100nF	
C106	100nF	
C107	100nF	
C108	100nF	
C109	100nF	
C110	100nF	
C37	lυF	
C40	lυF	
C42	lυF	
C49	lυF	
C91	lυF	
C55	100uF 25V	
C56	100uF 25V	
C66	100uF 25V	
C93	100uF 25V	
C111	100uF 25V	
C112	100uF 25V	
C61	10uF	





Component list	Ref.	Descrip	otion
	C80	10uF	
	C64	47nF	
	D1	PMLL4148	
	D2	PMLL4148	
	D4	PMLL4148	
	D7	PMLL4148	
	D8	PMLL4148	
	D9	PMLL4148	
		P/MLL4148	
		PMIL4148	
	D12	PMI14148	
	D14	PMI14148	
	D15	PMLL4148	
	D16	PMLL4148	
	D3	ZRB500F	
	D5	9.1V	
	D6	LED	
	<u>H1</u>	HOLE3.5MM	
	H2	HOLE3.5MM	
	H3	HOLE3.5MM	
	H6	HOLES 5MM	
		CON4	
	J3	CON4	
	J5	CON4	
	J6	CON4	
	J7	CON4	
	J8	CON2	
	J2	CON2	
	J4		
	J9		
	<u> </u>		
	112		
	J13	CON10AP	
	L1	100uH	
	L2	100uH	
	L3	100uH	
	L4	100uH	
	L5	100uH	
	L6	100uH	
	LI3	100uH	
	LI4	1000H	
	116	1000H	
	L17	100uH	
	L18	100uH	
	L19	100uH	
	L20	100uH	
	L21	100uH	
	L22	100uH	
	L/	KFC	
	Lδ	KFC	



Ref.	Descripti	on
	•	
L9	RFC	
L10	RFC	
L11	RFC	
L12	RFC	
Q1	BC856	
Q2	BC856	
Q4	BC856	
Q3	BCV62	
Q5	BC846BL	
RV1	10K	
RV2	10K	
RV3	10K	
RV4	10K	
RV5	10K	
R11	10K	
R12	10K	
R14	10K	
R15	10K	
R17	10K	
R26	10K	
R29	10K	
R30	10K	
R43	10K	
R56	10K	
R60	10K	
R69	10K	
R70	10K	
R71	10K	
R72	10K	
R73	10K	
R74	10K	
R75	10K	
R79	10K	
	10K	
R89	10K	
	TOK	
RI	IK	
R2	IK	
	IK	
K5	1K	
КУ	1K	
KIU	1K	
KI0	11/	
KIY		
KZI		
K∠J		
KZ4	1 N 1 V	
۲ZЭ	١K	







Component list	Ref.	Description	
	R31	1K	
	R32	1K	
	R35	1K	
	R38	1K	
	R41	1 K	
	R42	1K	
	R55	1k	
	R58	IK	
	R95		
		470K	
	R82	470K	
		22K	
	R59	220K	
	R8	220K	
	R13	47R	
	R18	2.2M	
	R20	2.2M	
	R22	2.2M	
	R27	1M	
	R33	1K13	
	R36	IK13	
	R39	16.04	
	R34	10.2K	
	R37	10.2K	
	R40	2 21K	
	R45	2.21K	
		2.21K	
	R63	2.21K	
	R81	1.2K	
	R46	1.2K	
	R47	4.7K	
	R48	4.7K	
	R49	4./K	
	R50	4./K	
	R03	4./K	
		4.7K	
		4.7K	
	R91	4.7K	
	R51	47K	
	R52	100R	
	R86	100R	
	R93	100R	
	R57	6.8K	
	R61	390K	
		470R	
	<u></u>	4/0K	
	K68	4/UK	
	R76	7.U7N 5.6K	
		8.2K	
		33K	



Ref.	Description	
DOF	0.01/	
	2.2K	
<u> </u>	820R	
<u> </u>	820R	
51	SW PUSHBUTION	
	CONN PLUG I	
TP2	CONN PLUG I	
TP3	CONN PLUG I	
	CONN PLUG I	
TP5	CONN PLUG I	
	CONN PLUG I	
	CONN PLUG I	
	CONN PLUG I	
119		
02		
03		
04		
05		
00		
110		
1113		
U15	IM7301/SO	
U16	LM7301/SO	
U20	IM7301/SO	
U21	IM7301/SO	
U22	IM7301/SO	
U23	LM7301/SO	
U24	LM7301/SO	
U25	LM7301/SO	
U26	LM7301/SO	
U14	4093	







Via G.Amendola 9 44028 Poggio Renatico (FE) Italy Tel +39 0532 829965 Fax +39 0532 829177 Website WWW.ELENOS.COM				
Title: CURRENT SENSOR				
Board Code: E2K 3A000_1	Model: E2500			
Proj. Engr. : A.Tomassini	Approved : A.Giovannelli			
Date: Wednesday, November 15, 2000	Sheet 1 of 1			







Component list	Ref.	Description
·		
	C1	100nF
	C2	100nF
	<u>C3</u>	100nF
	C4	100nF
	C13	100nF
	C14	100nF
	<u>CI5</u>	100nF
	<u>CI6</u>	
	<u> </u>	100nF
	-C18	100nF
	<u> </u>	
	<u>C20</u>	100nF
	<u> </u>	100nF
	<u> </u>	100nE
	<u> </u>	33
		33uF 25V
	$-\frac{C0}{C7}$	100pE 63V
		100nF 63V
	$\frac{co}{cg}$	100nF 63V
	<u> </u>	100nF 63V
	C12	10nF 63V
	<u>C11</u>	10nF 63V
	<u>C24</u>	100nF
	C25	100nF
	C26	100nF
	C27	100nF
	C28	100nF
	C29	100nF
	C30	100nF
	C31	100nF
	D1	15V
	H1	HOLE3.5MM
	H2	HOLE3.5MM
	H3	HOLE3.5MM
	H4	HOLE3.5MM
	H5	HOLE3.5MM
	<u>H6</u>	HOLE3.5MM
	H7	HOLE3.5MM
	<u>H8</u>	HOLE3.5MM
	J2	CONTUAP
	QZ	
	Q4	0.006P
	R2	0.006R
		0.006R
		0 006R
		47R
	R6	47R
	R7	47R
	R8	47R

Ref.

### Component list

Descri	ntion
Desch	puon

R9	47R		
R10	47R		
R11	47R		
R12	47R		
R13	1K		
R14	1K		
R15	1K		
R16	1K		
R17	100R		
U1	LMC7101BI		
U2	LMC7101BI		
U3	LMC7101BI		
U4	LMC7101BI		











Component list	Ref.	Description	
	DL1	LED HLMP2550	
	DL2	LED HLMP2350	
	DL3	LED GR 3mm	
	DL4	LED YE 3mm	
	DL5	LED GR/RED 3mm	
	H1	HOLE3.2MM	
	H2	HOLE3.2MM	
	H3	HOLE3.2MM	
	H4	HOLE3.2MM	
	J1	STRIP FEMALE 2.54 RIGHT 27P	
	J2	CON2	
	SWP1	MICRO-COSMOS	
	SWP2	MICRO-COSMOS	
	SWP3	MICRO-COSMOS	
	SWP4	MICRO-COSMOS	
	SWP5	MICRO-COSMOS	
	SWP6	MICRO-COSMOS	
	SWP7	MICRO-COSMOS	
	SWP8	MICRO-COSMOS	
	SW1	SW DIP-8/SM	












Engineering Department PHONE: +39 0532 829 965 - FAX: +39 0532 829 177 E-Mail: support@elenos.com



Component list	Ref.	Description
·		
	AR2	LMC7101BI
	AR1	LMC7101BI
	C1b	4n7
	C1a	4n7
	C1	4n7
	C5	4n7
	C3	100nF
	C4	100nF
	C6	100nF
	C7	100nF
	C3b	47pF
	C3a	47pF
	D1	HSMS2850
	Dla	HSMS2850
	JP1	4 HEADER
	J1	BNC
	Lx	6 x 0.4 D 2
	R2b	100K
	R2a	100K
	R1B1	1K2
	R2	1K2
	<u>R3</u>	l OK
	R3B1	10K
	R5	100
		100
	RIb	56
		56
	RIID	500
	RIIa	500
	R12	4K/
	KI3	4K/
	ntcb	
	ntc	TUUK NIC











J1		
	1	/DI_TX_ON
	2	/DI_TX_DFF
2	3	/DI_RESET
3	4	/DI_ENABLE
4	5	DI_COMMON
5	6	DO_ON
5	7	DD_DN_AIR
	8	DD_FAILURE
8	9	DD3dB
10	10	DO_COMMON

CONN PCB 10



Via G.Arr Tel +39 0 Website	nendola 9 44028 Poggio Renatico (FE) Italy 1532 829965 Fax +39 0532 829177 WWW.ELENOS.COM
Title: USER INTERFACE	
Board Code: E2K 4A000_0	Model: E2500
Proj. Engr. : A.Tomassini	Approved : A.Giovannelli
Date: Wednesday, November 15, 2000	Sheet 1 of 1



Ref.



# Component list

Description

H5 HC	LE3.2MM
J1 CON	IN PCB 10
J2 C0	ON10AP











Ref.

# Component list

Description

C1	10uF	
C3	100nF	
C2	100nF	
J1	CON4	
L2	100nH	
L1	100nH	
R1	68	
U1	LM35 DZ	









Ref.



# Component list

Description

C1	47nF	
J22	CN1	
J22	POSITIVE	
J23	NEGATIVE	
R1	18k	













Tel +39 C Website	nendola 9 44028 Poggio Renatico (FE) Italy 1532 829965 Fax +39 0532 829177 WWW.ELENOS.COM
Title: POWER AMPLIFIER	
Board Code:	Model: E2500
Proj. Engr. : A.Tomassini	Approved : A.Giovannelli
Date: Wednesday, November 15, 2000	Sheet 1 of 1

Engineering Department PHONE: +39 0532 829 965 - FAX: +39 0532 829 177 E-Mail: support@elenos.com



Component list	Ref.	Description	
	<u>CI</u>	56pF	
	<u>C2</u>	IOnF	
	C3	10nF	
	C4	10nF	
	C5	10nF	
	C6	10nF	
	C7	10nF	
	C8	10nF	
	C9	10nF	
	C10	10nF	
	C14	470pF	
	C11	470pF	
	C12	470pF	
	C15	470pF	
	C16	470pF	
	C17	470pF	
	C18	470pF	
	C19	470pF	
	C13	47uF 63V	
	D1	1N4148	
	Jl	SMA CS VERT	
	J2	BNC	
	L1	IND	
	L2	430nH	
	P1	20K	
	R1	10K	
	R2	10	
	R3	10	
	R4	10	
	R5	10	
	R8	10	
	R9	10	
	R6	5.6K	
	R7	22	
	TF1		
	TF2	25 ohm	
	TF3	25 ohm	
	TF4	50 ohm	
	U1	BLF278	











Via G.Arr Tel +39 0 Website	nendola 9 44028 Poggio Renatico (FE) Italy 1532 829965 Fax +39 0532 829177 WWW.ELENOS.COM
Title: LOW PASS FILTER	
Board Code:	Model: E2500
Proj. Engr. : A.Tomassini	Approved : A.Giovannelli
Date: Wednesday, November 15, 2000	Sheet 1 of 1

## Component list

#### Ref. Description

C1	38pF	
C4	38pF	
C3	70pF	
C2	70pF	
L1	20nH	
L5	20nH	
L2	80nH	
L4	80nH	
L3	74nH	





Via G.An Tel +39 0 Website	endola 9 44028 Poggio Renatico (FE) Italy 1532 829965 Fax +39 0532 829177 WWW.ELENOS.COM	
Title: SPLITTER INPUT		
Board Code:	Model: E2500	0
Proj. Engr. : A.Tomassini	Approved : A.Giovannelli	
Date: Wednesday, November 15, 2000	Sheet 1 of 1	

Engineering Department PHONE: +39 0532 829 965 - FAX: +39 0532 829 177 E-Mail: support@elenos.com











6.1. Air filter replacement The equipment features a filter placed in front of the air intake of the fans to prevent the ingress of dust, small insects or other foreign bodies which could be damaging to the operation of the equipment.

The air filter should be replaced at least once a year in normal operating conditions.



### REPLACING THE AIR FILTER

- Isconnect the equipment from the electrical supply
- Remove the front panel (see the fixing points in the diagram below)
- ${f \mathbb{R}}$  Replace the dirty air filter with a clean one
- $\mathbb{R}$  Replace the front panel













## POWER SUPPLY

Supply voltage (DR version):
Efficiency
Supply voltage (TR version):
Efficiency

110V, 220V, 380V three-phase-single phase 50-60Hz >90% 220V, 380V three-phase 50-60Hz 88%

## **RF SECTION**

Operating band:	87.5 -108 MHz
Output power:	nom. 2500W max >2700W
Driver power:	< 70W
Gain:	16 dB
Level of harmonics and spurious signals:	less than -80dBc
Asynchronous AM:	0.1%
Fast SWR intervention threshold:	300W
SWR limiter threshold:	200W
Efficiency:	>65%

## **GENERAL CHARACTERISTICS**

Temperature:	(operating) 0 ÷ +45 °C
	(storage) -20 ÷ +50 °C
Humidity:	(operating) 95% @ 40°C
	(storage) 90% @ 65°C
Altitude:	(operating) > 4600 m s.l.m.
	(storage) > 15000 m s.l.m.
Weight:	55Kg DR version (switching power supply)
	103Kg TR version (linear power supply)
Dimensions:	31 x 41.3 x 79 cm
Rack units:	7
Cooling:	forced ventilation

"IEE485, Analog monitor, RF output monitor and RF input connecting cables must be less than 1 m. long, while AC power input/output port cable must be less than 3 m. long.

